ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -12- only calls nine times of the high precise analysis. References [1] WANG Rong-qiao, JIA Zhi-gang, FAN Jiang, HU Dian-yin,Shen Xiu-li. Hexahedral mesh regeneration method for MDO on complex aero-engine components[J]. Journal of Aerospace Power, 201109, 26(9): 2032-2038. (in Chinese) [2] Hirt C. W., Amsden A. A., Cook J. L. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J]. Journal of Computational Physics. 1974, 14(3): 227-253. [3] Carstens V., Kemme R., Schmitt S. Coupled Simulation of Flow-Structure Interaction in Turbomachinery[J]. Aerospace Science and Technology. 2003, 7(4): 298-306. [4] Singh G., Grandhi R. V. Mixed-Variable Optimization Strategy Employing Multifidelity Simulation and Surrogate Models[J]. AIAA Journal. 2010, 48(1): 215-223. [5] Baker M. L., Munson M. J., Alston K. Y., et al. Integrated Hypersonic Aeromechanics Tool (IHAT)[R]. Norfolk, Virginia: 12th AIAA International Space Planes and Hypersonic Systems and Technologies. AIAA paper 2003-6952. 2003. [6] Hirt C. W., Amsden A. A., Cook J. L. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J]. Journal of Computational Physics. 1974, 14(3): 227-253. [7] Dinh Q. V., Mantel B., He J. W. A Cartesian Grid Finite Element Method for Aerodynamics of Moving Rigid Bodies[J]. 1992, 1: 883-890. [8] Grüber B., Carstens V. Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking into Account Viscous Effects[J]. Journal of Turbomachinery. 1998, 120(1): 104-111. [9] Richter, Leyland R., Penelope L. Precise Pitching Airfoil Computations by Use of Dynamic Unstructured Meshes[R]. AIAA 24th fluid dynamics conference. AIAA 93-2971. 1993. [10] Blom F. J., Leyland P. Analysis of Fluid-Structure Interaction by Means of Dynamic Unstructured Meshes[J]. Journal of Fluids Engineering. 1998, 120: 792. [11] Kaufman M., Balabanov V., Giunta A. A., et al. Variable-Complexity Response Surface Approximations for Wing Structural Weight in HSCT Design[J]. Computational Mechanics. 1996, 18(2): 112-126. [12] Macmillin P. E. Trim, Control, and Performance Effects in Variable-Complexity High-Speed Civil Transport Design[D]. Virginia Polytechnic Institute and State University, 1996. [13] Shanno D. F. Conditioning of Quasi-Newton Methods for Function Minimization[J]. Mathematics of Computation. 1970, 24(111): 647-656. [14] Goldfarb D. A Family of Variable Metric Methods Derived by Variational Means[J]. Mathematics of Computation. 1970, 24(109): 23-26. [15] Sangook J., Young-Hee J., Rho A. J., et al. Application of Collaborative Optimization Using Response Surface Methodology to an Aircraft Wing Design[R]. Albany, New York: 10th AIAA/ISSMO Multidisciplinary Analysis and optimization conference. AIAA 2004-4442. 2004. [16] WANG Rong-qiao, JIA Zhi-gang, Yang Jun-jie, HU Dian-yin, FAN Jiang, Shen Xiu-li. Study on disk and blade design based on multi-layer optimization strategy. Journal of Aerospace Power. 201206, 27(6): 1201-1209. (in Chinese)

RkJQdWJsaXNoZXIy MjM0NDE=