ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -12- [20] S.V. Bobylev, N.F. Morozov, I.A. Ovid'ko, Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys Rev Lett, 105 (2010) 055504. [21] S.V. Bobylev, N.F. Morozov, I.A. Ovid'ko, Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids. Phys Rev B, 84 (2011) 094103. [22] M.Yu. Gutkin, I.A. Ovid'ko, Grain boundary migration and rotational deformation mode in nanocrystalline materials. Appl Phys Lett, 87 (2005) 251916. [23] P.A. Juan, S. Berbenni, L. Capolungo, Prediction of internal stresses during growth of first- and second-generation twins in Mg and Mg alloys. Acta Mater, 60 (2012) 476-486. [24] N.F. Morozov, I.A. Ovid'ko, A.G. Sheinerman, E.C. Aifantis, Special rotational deformation as a toughening mechanism in nanocrystalline solids. J Mech Phys Solids, 58 (2010) 1088-1099. [25] I.A. Ovid’ko, A.G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Scripta Mater, 58 (2010) 5286-5294. [26] I.A. Ovid’ko, A.G. Sheinerman, E.C. Aifantis, Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater, 59 (2011) 5023-5031. [27] I.A. Ovid’ko, A.G. Sheinerman, Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl Phys Lett, 90(17) (2007) 171927. [28] I.A. Ovid’ko, A.G. Sheinerman, Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater, 57(7) (2009) 2217-2228. [29] A.V. Sergueeva, N.A. Mara, N.A. Krasilnikov, R.Z. Valiev, A.K. Mukherjee, Cooperative grain boundary sliding in nanocrystalline materials. Philos Mag, 86(36) (2006) 5797-5804. [30] I.A. Ovid’ko, A.G. Sheinerman, E.C. Aifantis, Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater, 56(12) (2008) 2718-2727. [31] N.L. Muskhelishvili, Soma basic problems of mathematical theory of elasticity, Leyden, Noordhoff, 1975. [32] A.E. Romanov, V.I. Vladimirov, Disclinations in crystalline solids, in: Nabarro, F.R.N., Dislocation in solids, Amsterdam, Elsevier, 1992, pp. 191-402. [33] Q.H. Fang, Y.W. Liu, C.P. Jiang, B. Li, Interaction of a wedge disclination dipole with interfacial cracks. Eng Fract Mech, 73 (2006) 1235-1248. [34] Y.W. Liu, Q.H. Fang, C.P. Jiang, A wedge disclination dipole interaction with a circular inclusion. Phys Stat Sol (A), 203(3) (2006) 443-458. [35] Q.H. Fang, Y.W. Liu, C.P. Jiang, Edge dislocation interacting with an interfacial crack along a circular inhomogeneity. Int J Solids Struct, 40 (2003) 5781-5797. [36] Q.H. Fang, Y.W. Liu, B. Jin, P.H. Wen, Effect of interface stressed on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion. Int J Solids Struct, 46 (2009) 1413-1422. [37] Q.H. Fang, H. Feng, Y.W. Liu, S. Lin, N. Zhang, Special rotational deformation effect on the emission of the dislocations from a crack tip in deformed nanocrystalline solids. Int J Solids Struct, 49 (2012) 1406-1412. [38] T.Y. Zhang, J.C.M. Li, Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall Mater, 39 (1991) 2739-2744. [39] J.P. Hirth, J. Lothe, Theory of dislocations, second ed, John-wiley, New York, 1964. [40] J.R. Rice, R. Thomson, Ductile versus brittle behaviour of crystals. Philos Mag, 29 (1974) 73. [41] J.P. Hirth, J. Lothe, Tgeiry of dislocations, Wiley, New York, 1982. [42] M.X. Huang, Z.H. Li, Dislocation emission criterion from a blunt crack tip. J Mech Phys Solids, 52 (2004) 1991-2003.

RkJQdWJsaXNoZXIy MjM0NDE=