ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- (2011) 181–200. [2] V.A. Lubarda, Image force on a straight dislocation emitted from a cylindrical void. Int J Solids Struct, 48 (2011) 648–660. [3] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch Rat Mech Anal, 57 (1975) 291–323. [4] M.E. Gurtin, A.I. Murdoch, Surface stress in solids. Int J Solids Struct, 14 (1978) 431–440. [5] M.E. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A, 78 (1998) 1093–1109. [6] P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett, 82 (2003) 535–537. [7] N.L. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, P. Noodhoff, Groningen, 1975. [8] Z.J. Gao, A circular inclusion with imperfect interface: Eshelby's tensor and related problems. J Appl Mech, 62 (1995) 860–866. [9] Q.H. Fang, Y.W. Liu, Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater, 54 (2006) 4213–4220. [10] Y.X. Zhao, Q.H. Fang, Y.W. Liu, Edge misfit dislocation formation at the interface of a nanopore and infinite substrate with surface/interface effects. Phil Mag, 92 (2012) 4230–4249. [11] J.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1982. [12] M.T. Qaissaunee, M.H. Santare, Edge dislocation interaction with an elliptical inclusion surrounding by an interfacial zone. Q J Mech Appl Math, 48 (1995) 465–482. [13] L. Stagni, Edge dislocation near an elliptic inhomogeneitywith either an adhering or a slipping interface-a comparative study. Phil Mag A, 68 (1993) 49–57. [14] V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.R. Remington, M.A. Meyers, Void growth by dislocation emission. Acta Mater, 52 (2004) 1397–1408. [15] R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11 (2000) 139–147. [16] V. Tvergaard, J.W. Hutchinson, Two mechanisms of ductile fracture: void by void growth verse multiple void interaction. Int J Solids Struct, 39 (2002) 3581–3597. [17] C.W. Mi, D.A. Buttry, P. Sharma, D.A. Kouris, Atomistic insights into dislocation-based mechanisms of void growth and coalescence. J Mech Phys Solids, 59 (2011) 1858–1871. [18] E.M. Dubensky, D.A. Koss, Void/pore distributions and ductile fracture. Metall Trans A, 18 (1987) 1887–1895. [19] X.S. Gao, T.H. Wang, J. Kim, On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution. Int J Solids Struct, 42 (2005) 5097–5117.

RkJQdWJsaXNoZXIy MjM0NDE=