ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- very long life regime of high-strength steel. Fatigue Fract Engng Mat Struct 2002; 25: pp. 823-30 [8] Murak ami, Y.: Metal Fatigue: Effects of small defects and non-metallic inclusions. Elsevier, London, 2002 [9] Shioza wa, K.; Morii, Y.; Nishino, S.; Lu, L.: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. In: Intern. J. Fatigue, Vol. 28, 2006, pp. 1521-1532 [10] Sakai, T.; Sato, Y.; Oguma, N.: Characteristic S-N properties for high-carbon-chromium-bearing steel under axial loading in long-life fatigue. In: FFEMS 25 (2002) pp. 765-773 [11] Mayer, H.: Fatigue damage of low amplitude cycle under variable amplitude loading condition. In: Proc VHCF 4. Ann Arbor; 2007. pp. 333-340 [12] Mayer, H.; Stojanovic, S.; Ede, C.; Zettl, B.: Beitrag niedriger Lastamplituden zur Ermüdungsschädigung von 0,15%C Stahl. Mat.-wiss. U. Werkstofftech. 2007; 38, No.8 [13] Mayer, H.; Fitzka, M.; Schuller, R.: Ultrasonic fatigue testing of 2024-T351 aluminium alloy at different load ratios under constant and variable amplitude. In: Proc. of VHCF5, Berlin, 2011, pp. 355-360 [14] Mayer, H.; Haydn, W.; Schuller, R.; Issler, S.; Bacher-Höchst, M.: Very high cycle fatigue properties of bainitic high carbon-chromium steel under variable amplitude conditions, Int. J. Fatigue 2009; 31: pp. 1300-1308 [15] Issler, S.; Bacher-Höchst, M.; Haydn, W.: Fatigue design for components under variable amplitude loading in the very high cycle fatigue area. In: Sonsino, C.M.; McKeighan, P.C. (eds.): 2nd Int. Conference on Material and Component Performance under Variable Amplitude Loading, DVM, Berlin, 2009, pp. 935-943 [16] Nakaji ma, M.; Kamiya, N.; Itoga, H.; Tokaji, K.; Ko, H.: Experimental estimation of crack initiation lives and fatigue limit in subsurface fracture of a high carbon chromium steel. In: Int. J. Fatigue, 2006, 28 (11), pp. 1540–1546. [17] Lu, L.; Shiozawa, K.: Effect of two-step load variation on giga-cycle fatigue and internal crack growth behaviour of high carbon-chromium bearing steel. In: Sakai, T.; Ochi, Y. (eds.): Proc. of VHCF3. Japan, Society of Material Science, 2004, pp. 185-192 [18] Mayer, H.; Fitzka, M.; Schuller, R.: Ultrasonic fatigue testing of 2024-T351 aluminium alloy at different load ratios under constant and variable amplitude. In: Berger, C.; Christ, H.-J. (eds.): Proc. of VHCF5. DVM, Berlin, 2011, pp. 355-360 [19] Mayer, H.: Fatigue crack growth and threshold measurements at very high frequencies. In: International Materials Reviews, 1999, 44 (1), p. 1–34. [20] Edwar ds, P.R.; Darts, J. (Eds.): Standardised Fatigue Loading Sequences for Helicopter rotors – Helix and Felix – Part 1: Background and fatigue evaluation and Part 2: Final Definition of Helix and Felix. NLR TR 84043 U, 1984

RkJQdWJsaXNoZXIy MjM0NDE=