13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Eng Fract Mech, 70 (2003) 2385-2406. [9] M. Ostoja-Starzewski, Lattice models in micromechanics. Appl Mech Rev, 55 (2002) 35-60. [10]K.J. Niskanen, Strength and Fracture of Paper, KCL Paper Science Center, Espoo, Finland, 1993. [11]L.I. Salminen, A.I. Tolvanen, M.J. Alava, Acoustic emission from paper fracture. Phys Rev Lett, 89 (2003) 185503. [12] P. Isaksson, R. Hagglund, Analysis of the strain field in the vicinity of a crack-tip in an in-plane isotropic paper material. Int J Solids Struct, 44 (2007) 659-671. [13]A. Mikko, N. Kaarlo, The physics of paper. Reports on Progress in Physics, 69 (2006) 669-723. [14]M. Ostoja-Starzewski, D.C. Stahl, Random fiber networks and special elastic orthotropy of paper. J Elasticity, 60 (2000) 131-149. [15]H.J. Gao, P. Klein, Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids, 46 (1998) 187-218. [16]J.X. Liu, S.C. Swng, J. Zhang, N.G. Liang, Lattice type of fracture model for concrete. Theor Appl Fract Mech, 48 (2007) 269-284. [17]L. Graham-Brady, X.F. Xu, Stochastic morphological modeling of random multiphase materials. J Appl Mech, 75 (2008) 061001. [18]C.T. Wang, Applied Elasticity, McGraw-Hill Book Company, New York, 1953. [19]S. Wlodzimierz, M. Krzysztof, T. Wiktorian, An analysis of Young’s modulus distribution in the paper plane. Fibers Text East Eur, 14 (2006), 91-94. [20]R.A. Donald, P.P. Pradeep, D.K. Bhattacharya, Essentials of Materials for Science and Engineering, Cengage Learning, 2004.
RkJQdWJsaXNoZXIy MjM0NDE=