0 1 2 3 4 5 6 7 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 temps * 10-6 s k1-ad k1 a/r=10 k1 a/r=8 k1 a/r=5 k1 a/r=3 k1 a/r=2 k1 a/r=1.5 k1 a/r=1.3 k1 a/r=1.1 Fig.5 (a) considered geometries, (b). DSIF for different sizes of hole 6. Conclusion This study presents a computational procedure to evaluate the SIF for cracked structures with void using XFEM. The correlation of the obtained results with the literature for the fatigue application demonstrates the effectiveness of this procedure. The obtained results of dynamic applications agree very well with the attended physical results which approve so the robustness of our approach. As perspectives of this study the present approach can be extended to problems of multi-voids and dynamic crack propagation. References [1] S.H. Song, G.H. Paulino, Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method, Int. J. Solids Struct. 43 4830– 4866.(2006). [2] F. Chirino, J. Dominguez, Dynamic analysis of cracks using boundary element method, Engrg. Fract. Mech. 34 1051–1061. (1989). [3] Y.M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finite difference method, Engrg. Fract. Mech. 7. 653–660. (1975). [4] A.-V. Phan, L.J. Gray, A. Salvadori, Transient analysis of the dynamic stress intensity factors using SGBEM for frequency-domain elastodynamics, Comput. Methods Appl. Mech. Engrg ,199. 3039-3050. (2010). [5] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Engng. 45,601-620. (1999). [6] T. Belytschko, H Chen, Singular enrichment finite element method for elastodynamic crack propagation, International Journal of Computational Methods, 1 (1), 1–15. (2004). [7] J. Réthoré, A.Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Meth. Engng. 63, 631–659. (2005). [8] G.C. Sih, P. Paris, and G. Irwin, On cracks in rectilinearly anisotropic bodies, International Journal of Fracture Mechanics, 1 (3) 189–203. (1965) [9] [10] [11] Sukumar .N, Chopp D. L , Möes . N , Belytschko T., Modeling holes and inclusions by level sets in the extended finite-element method. 6183-6200, s.l. : Comput. Methods Appl . Mech. Engrg., 2001, Vol. 190. Pais, M., MATLAB Extended Finite Element (MXFEM) Code v1.2, www.matthewpais.com, 2011. E. Giner ., N. Sukumar ., J. E. Tarancon ., F. J. Fuenmayor ., An Abaqus implementation of the extended finite element method, Departamento de Ingenierıa Mecanica y de Materiales
RkJQdWJsaXNoZXIy MjM0NDE=