ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -6- Phys Solids. 39 (1991) 555-67. [3] S.G. Larsson, Carlson AJ. Influnece of non-singular stress terms and specimen geometry on small scale yielding at crack tips in elastic-plastic materials. . J Mech Phys Solids. 21 (1973) 263-77. [4] N.P. O'DOWD, C. Shih, R. Dodds. The role of geometry and crack growth on constraint and implications for ductile/brittle fracture. American Society for Testing and Materials. 2 (1995) 134-59. [5] J.H. Kim, G.H. Paulino. T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Comput Method Appl M. 192 (2003) 1463-94. [6] C.S. Chen, R. Krause, R.G. Pettit, L. Banks-Sills, Ingraffea AR. Numerical assessment of T-stress computation using a p -version finite element method. Int J Fracture. 107 (2001) 177-99. [7] A. Sutradhar, G.H. Paulino. Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Eng Anal Bound Elem. 28 (2004) 1335-50. [8] G.H. Paulino, J.H. Kim. A new approach to compute T-stress in functionally graded materials by means of the interaction integral method. Eng Fract Mech. 71 (2004) 1907-50. [9] J. Sladek, V. Sladek. Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the conservation integral method. Int J Fracture. 86 (1997) 199-219. [10] S. Dag. Mixed-mode fracture analysis of functionally graded materials under thermal stresses: A new approach using J(k)-integral. J Therm Stresses. 30 (2007) 269-96. [11] A. KC, J.H. Kim. Interaction integrals for thermal fracture of functionally graded materials. Eng Fract Mech. 75 (2008) 2542-65. [12] J.H. Kim, A. KC. A generalized interaction integral method for the evaluation of the T-stress in orthotropic functionally graded materials under thermal loading. J Appl Mech-T Asme. 75 (2008). [13] J.R. Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech-T Asme. 35 (1968) 379-86. [14] H.J. Yu, L.Z. Wu, L.C. Guo, S.Y. Du, Q.L. He. Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int J Solids Struct. 46 (2009) 3710-24. [15] H.J. Yu, L.Z. Wu, L.C. Guo, H. Li, S.Y. Du. T-stress evaluations for nonhomogeneous materials using an interaction integral method. Int J Numer Meth Eng. 90 (2012) 1393-413.

RkJQdWJsaXNoZXIy MjM0NDE=