13th International Conference on Fracture June 16–21, 2013, Beijing, China 8 [6] I. S. Raju (1987). Calculation of strain-energy release rates with higher order and singular finite elements. Engineering Fracture Mechanics 28: 251-274. [7] F. G. Buchholz, H. Grebner, K. H. Dreyer and H. Krome (1988). 2D- and 3D-applications improved and generalized modified crack closure integral method. In Computational Mechanics’88, vol. 1 (Eds. S. N. Atluri et al.), Springer Verl., New York. [8] M. A. Astiz (1986). An incompatible singular elastic element for two- and three-dimensional crack problems. International Journal of Fracture 31: 105-124. [9] A. Carpinteri (1992). Elliptical-arc surface cracks in round bars. Fatigue of Engineering Materials 15(11): 1141-1153. [10] A. Carpinteri and R. Brighenti (1996). Fatigue propagation of surface flaws in round bars: a three-parameter theoretical model. Fatigue & Fracture of Engineering Materials & Structures 19(12): 1471-1480. [11] A. Levan and J. Royer (1993). Part-circular surface cracks in round bars under tension, bending and twising. International Journal of Fracture 61: 71-99. [12] K. D. Thompson and S. D. Sheppard (1992). Stress intensity factors in shafts subjected to torsion and axial loading. Engineering Fracture Mechanics 42(6): 1019-1034. [13] K. D. Thompson and S. D. Sheppard (1992). Fatigue crack growth in notched and plain shafts subjected to torsion and axial loading. Engineering Fracture Mechanics 43(1): 55-71. [14] N. Couroneau and J. Royer (1998). Simplified model for the fatigue growth analysis of surface crack in round bars under mode I. International Journal of Fatigue 20(10): 711-718. [15] C. S. Shin and C. Q. Cai (2004). Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. International Journal of Fracture 129: 239-246. [16] F. P. Yang and Z. B. Kuang (2007). Stress intensity factor for surface fatigue crack in a round bar under cyclic axial loading. Fatigue & Fracture of Engineering Materials & Structures 30: 621-628. [17] F. G. Buchholz, A. Chergui and H. A. Richard (1999). Computational fracture analyses by means of virtual crack closure integral methods. In 6th Congreso Argentino de Mecanica Computational (MECOM99) 29: 1-19, Argentina. [18] R. Krueger (2004). Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews 57(2): 109-143. [19] PC. Paris and F. Erdogan(1963). A critical analysis of crack propagation laws. Journal of Basic Engineering 85: 528-534. [20] R. G. Forman, V. E. Kearney and R. M. Engle (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering 89(3): 459-464. [21] A. Hartman and J. Schijve (1970). The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in alumimum alloys. Engineering Fracture Mechanics 1(4): 615-631. [22] A. Carpinteri and S. Vantadori (2008). Surface cracks in round bars under cyclic tension or bending. Engineering Materials 378: 341-354. [23] J. Torbio, J. C. Matos, B. Gonzalez, J. Escuadra (2009). Numerical modeling of crack shape evolution for surface flaws in round bars under tensile loading. Engineering Failure Analysis 16(2): 618-630. [24] J. Torbio, J. C. Matos, B. Gonzalez, J. Escuadra (2011). Compliance evolution in round cracked bars under tensile fatigue. Engineering Fracture Mechanics 78(18): 3243-3252. [25] S. Beretta and M. Carboni (2006). Experiments and stochastic model for propagation lifetime of railway axles. Engineering Fracture Mechanics 73(17): 2627-2641. [26] P. Bortot and S. Beretta (2012). On the estimation of fatigue crack growth in a contaminated H2S environment by interrupted cyclic tests. In 19th European Conference on Fracture 371, Russia.
RkJQdWJsaXNoZXIy MjM0NDE=