ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [19] J. Desrues, G. Viggiani, Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech., 28 (2004) 279–321. [20] A. Rechenmacher, S. Abedi, O. Chupin, Evolution of force chains in shear bands in sands. Geotechnique, 60 (2010) 343–351. [21] R.D. Mindlin, Tiersten, H.F., Effects of couple-stresses in linear elasticity. Archive of Rational Mechanics and Analysis 11 (1962) 415–448. [22] W.T. Koiter, Couple-stresses in the theory of elasticity. Parts I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B67 (1964) 17–44. [23] R.A. Toupin, Perfectly elastic materials with couple stresses. Archive of Rational Mechanics and Analysis 11 (1962) 385–414. [24] E. Sternberg, R. Muki, The effect of couple stress on the stress concentration of a crack. Int. J. Solids Struct., 3 (1967) 69-95. [25] C. Atkinson, F.F. Leppington, The effect of couple stresses on the tip of a crack. Int. J. Solids Structures, 13 (1977) 1103-1122. [26] N.F. Morozov, Mathematical Issues of the Crack Theory, Nauka, Moscow (in Russian), 1984. [27] P.A. Gourgiotis, H.G. Georgiadis, An approach based on distributed dislocations and disclinations for crack problems in couple-stress elasticity. Intern J Solids and Struct. 45 (2008) 5521–5539. [28] G.K. Batchelor, Transport properties of two-phase materials with random structure. Annal. Rev. Fluid Mech., Palo Alto, California Ann. Rev., Inc., 6 (1974) 227-255. [29] A.V. Dyskin, E. Pasternak, Rotational mechanism of in-plane shear crack growth in rocks under compression, in: Y. Potvin, J. Carter, A. Dyskin, R. Jeffrey (Eds.) Proc. 1st Southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, Australian Centre for Geomechanics, 2008, 2, pp. 111-120. [30] E. Pasternak, A.V. Dyskin, Intermediate asymptotics for scaling of stresses at the tip of crack in Cosserat continuum, in: Proc. 12th Intern. Conf. Fracture ICF12, Ottawa, 2009. Paper T40.014. [31] A.V. Dyskin, E. Pasternak, Cracks in Cosserat continuum – Macroscopic modelling, in: G.A. Maugin, A.V. Metrikine (Eds.) Mechanics of Generalized Continua: One hundred years after the Cosserats. Springer series "Advances in Mechanics and Mathematics", Vol. 21 (2010). Springer, New York, 35-42. [32] E. Pasternak, H.-B. Mühlhaus, A.V. Dyskin, On the possibility of elastic strain localisation in a fault, Pure Appl. Geophys. 161 (2004) 2309-2326. [33] A.V. Dyskin, Crack growth criteria incorporating non-singular stresses: Size effect in apparent fracture toughness. Intern. J. Fracture, 83 (1997) 191-206. [34] W. Nowacki, The linear theory of micropolar elasticity, in: W. Nowacki and W. Olszak (Eds.), Micropolar Elasticity, 1974, Wien, New York: Springer - Verlag, 1-43. [35] B.A. Bilby, J.D. Eshelby, Dislocation and the Theory of Fracture, in: Fracture, An Advanced Treatise, edited by H. Liebowitz, Vol. I, Microscopic and Macroscopic Fundamentals, 1968, Academic Press, New York and London, 99-182. [36] P.A. Gourgiotis, H.G. Georgiadis, Distributed dislocation approach for cracks in couple-stress elasticity: shear modes. Intern. J. Fracture, 147 (2007) 83-102. [37] P.A. Gourgiotis, H.G. Georgiadis, M.D. Sifnaiou, Couple-stress effects for the problem of a crack under concentrated shear loading. Mathematics and Mechanics of Solids, 17 (2011) 433-459. [38] V.A. Lubarda, The effects of couple stresses on dislocation strain energy. Intern. J. Solids and Struct., 40 (2003) 3807-3826. [39] V. Kobelev, Mircopolar model of fracture for composite material. Meccanica, 41 (2006) 653-660.

RkJQdWJsaXNoZXIy MjM0NDE=