ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [3] C. Bathias and P. C. Paris, Gigacycle fatigue in mechanical practice, editor: Marcel Dekker, Section 7, (2004) ISBN 0-8247-2313-9. [4] Y. Murakami, Metal Fatigue: Effect of small defects and non-metallic inclusion, Elsevier Science Ltd, (2002). [5] Y. Gu, X. Teng, C. Liu, Y. He, C. Tao, Acta Aeronautica et Astronautica Sinica, 33 (2012), pp. 2136. [6] G. Chai, International Journal of Fatigue, 28 (2006) 1533. [7] O. Umezawa, and K. Nagai, ISIJ International. 37 (1997), pp. 1170-1179. [8] E. Notkina, G. Lütjering, and A. Gysler, Proc. Inter. Conf. on Fatigue in the very High Cycle Regime, University of Agriculture Science Press, (2001), Vienna, pp. 149-156. [9] Y. Murakami, T. Nomoto and T. Ueda, Fat. Fract. Eng. Mater Struct, 22 (1999) 581. [10]C. Stöcker, M. Zimmermann and H.-J. Christ, International Journal of Fatigue, 33 (2011) 2. [11] T. Sakai, W. Li, B. Lian and N. Oguma, Review and new analysis on fatigue crack initiation mechanisms of interior inclusion – induced fracture of high strength steels in very high cycle regime, (2011), Proc. Of Conf. VHCF 5, eds: D berger, H. –J. Christ, pp. 19. [12] N. Jia, R. Lin Peng, G. Chai, S. Johansson and Y. D. Wang, Mater. Sci. and Eng. A 491 (2008) 425. [13] G. Chai, N. Zhou, S. Ciurea, M. Anderssona and R. Lin Peng, Scripta Materialia 66 (2012) p. 769. [14] P. Zhang, S. Qu, Q.Q. Duan, S.D. Wu, S.X. Li, Z.G. Wang and Z.F. Zhang, Low-cycle fatigue-cracking mechanism in fcc crystalline materials, Philosophical Magazine, Vol. 91, No. 2, 11 January 2011, 229–249. [15] Y. Murakami, Eng. Frac. Mech., 22 (1985), pp. 101-114.

RkJQdWJsaXNoZXIy MjM0NDE=