ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Gearboxes. European Wind Energy Conference–EWEC 2010. [5] C.Fernandes, R. C. Martins, Jorge H. O. Seabra, Friction torque of cylindrical roller thrust bearings lubricated with wind turbine gear oils. Tribology International (2012) (article in press). [6] F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos, Reliability of Different Wind Turbine Concepts with Relevance to Offshore Application. European Wind Energy Conference 2008. [7] F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos, Reliability of wind turbine subassemblies. IET Renewable Power Generation, 3 (2009) Issue 4, 387–401. [8] Ma yang, He Chengbing, Feng Xinxin, Institutions Function and Failure Statistic and Analysis of Wind Turbine. Physics Procedia, 24 (2012), 25–30. [9] F. Sadeghi, B. Jalalahmadi, T. S. Slack, N. Raje, N. K. Arakere, A Review of Rolling Contact Fatigue. Journal of Tribology, 131 (2009), Issue 4, 041403–1. [10]A. Ragheb, M. Ragheb, Wind turbine gearboxes technologies. Proceedings of the 1st International Nuclear and Reneawble Energy Conference - INREC 2010. [11] G. Sines, Behaviour of metals under complex static and alternating stresses, in: Metal Fatigue (eds. G. Sines and J.L. Waisman), McGraw-Hill, New York, 1959, pp. 145–169. [12]W. N. Findley, Trans. ASME Ser B 81 (1959), 301. [13]T. Matake, Bull. JSME 20 (1977), 257. [14]D. L. McDiarmid, Fatigue Fract. Engng Mater. Struct. 17 (1994), 1475. [15] I. V. Papadopoulos, Fatigue polycyclique des métaux: une nouvelle approche. Ph.d Thesis, spécialité: Mécanique, Ecole des Ponts et Chaussées, France, 1987. [16]K. Dang Van, Sur la résistance à la fatigue des métaux. Sciences Technique Armement 47 (1973), 3. [17]A.-S. Beranger, J.-V. Berard and J.-F. Vittori, A fatigue life assessment methodology for automotive components, in Fatigue Design of Components, in: ESIS Publication, 22, G. Marquis and J. Solind (eds.), Elsevier Science, 1997. [18] A. Bernasconi, M. Filippini, S. Foletti, D. Vaudo, Multiaxial fatigue of a railwheel steel under non-proportional loading. International Journal of Fatigue, 28 (2006), 663–672. [19]M. Ciavarella, F. Monno, G. Demelio. On the Dang Van fatigue limit in rolling contact fatigue. International Journal of Fatigue, 28 (2006), 852–863. [20]H. Desimone, A. Bernasconi, S. Beretta, On the application of Dang Van criterion to rolling contact fatigue. Wear 260 (2006), 568–571. [21]S. Suresh, Fatigue of materials, Cambridge University Press, New York, 2006. [22]R.B. Heywood, Designining against fatigue, Chapman and Hall Ltd., London, 1962. [23]T.J. Dalan, in: O.J. Horger (Ed.), ASME Handbook, Metal Engineering Design, New York. [24] J. Lai, T. Lund, K. Rydén, A. Gabelli, I. Strandell, The fatigue limit of bearing steels – Part I: A pragmatic approach to predict very high cycle fatigue strength. Int. Journal of Fatigue 37 (2012), 166–167. [25]Y. Murakami, Metal Fatigue: Effects of Small defects and Nonmetallic Inclusions, Elsevier, Oxford, 2002. [26]B. Atzori, G. Meneghetti, L. Susmel, Material fatigue properties for assessing mechanical components weakened by notches and defects. Fatigue Eng Mater, 28 (2005), 83–97. [27]M.L. Roessle, A. Fatemi, Strain-controlled fatigue properties of steels and some simple approximations. Int. Journal of Fatigue, 22 (2000), 495–511. [28] E.C. Santos, K. Honda, H. Koike, J. Rozwadowska, Fatigue strength improvement of AISI 52100 bearing steel by induction heating and repeated quenching. Material Science, 47 (2011), No. 5, 677 –682.

RkJQdWJsaXNoZXIy MjM0NDE=