ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- [6] Etter T, Kuebler J, Frey T, Schulz P, L¨offler JF, Uggowitzer PJ. Strength and fracture toughness of interpenetrating graphite/aluminum composites produced by the indirect squeeze casting process. Mater. Sci. Eng. A, 386 (2004) 61–7. [7] Y.J. Yum , H. You Pure mode I, II and mixed mode interlaminar fracture of graphite/epoxy composite materials. J. Reinf. Plast. Compos., 20 (9) (2001) 794-08. [8] C. Sukjoo, V.S. Bhavani. Fracture toughness of transverse cracks in graphite/epoxy laminates at cryogenic conditions. Composites Part B, 38 (2007) 193–0. [9] S.N. Wosu, D. Hui, P.K. Dutta Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites. Eng. Fract. Mech., 72 (2005) 1531–58. [10] R.A. Jurf, R.B. Pipes Interlaminar fracture of composite materials. J. Compos. Mater. 16, (1982) 386-4. [11] E.V. Lomakin, A.I. Zobnin, A.V. Berezin. Finding the fracture toughness characteristics of graphite materials in plane strain. Strength. Mater., 7(4) (1975) 484-7. [12] F. Erdogan, G.C. Sih. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. T ASME, 85 (1963) 519-5. [13] G.C. Sih Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract., 10 (1974) 305-21. [14] M.A. Hussain, S.L. Pu, J. Underwood. Strain energy release rate for a crack under combined mode I and Mode II. Fracture Analysis, ASTM STP 560. (Philadelphia): American Society for Testing and Materials, 1974; 2-28. [15] M.R. Ayatollahi, M.R.M. Aliha. Mixed mode fracture analysis of polycrystalline graphite – A modified MTS criterion. Carbon, 46 (2008) 1302-8. [16] M.R. Ayatollahi, A.R. Torabi. Tensile fracture in notched polycrystalline graphite specimens. Carbon, 48 (2010) 2255-65. [17] M.R. Ayatollahi, F. Berto, P. Lazzarin. Mixed Mode Brittle Fracture of Sharp and Blunt V-notches in Polycrystalline Graphite .Carbon, 49(7) (2011) 2465-74. [18] P. Lazzarin, R. Zambardi. A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches. Int. J. Fract. 112, (2001) 275–298. [19] P. Lazzarin, F. Berto. Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. Int. J. Fract., 135 (2005) 161–185. [20] F. Berto, P. Lazzarin. A Review of the volume-based strain energy density approach applied to V-Notches and Welded Structures, Theor. Appli. Fract. Mech., 52 (2009) 183-194. [21] F. Berto, P. Lazzarin, F.J. Gómez, M. Elices. Fracture assessment of U-notches under mixed mode loading: two procedures based on the equivalent local mode I concept. Int. J. Fract., 148 (2007) 415-433. [22] F.J. Gómez, M. Elices, F. Berto, P. Lazzarin . Local strain energy to asses the static failure of U-notches in plates under mixed mode loading. Int. J. Fract., 145 (2007) 29–45.

RkJQdWJsaXNoZXIy MjM0NDE=