13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- cycles. Int Mater Reviews, 57 (2012) 73-91. [7]A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue, 38 (2012) 46-56. [8]D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue, 32 (2010) 1521-1542. [9]K. Shiozawa, Y. Morii, S. Nishino, L. Lu, Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int J Fatigue, 28 (2006) 1521-1532. [10]Y. Murakami, T. Nomoto, T. Ueda, Y. Murakami, On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part I: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct, 23 (2000) 893-902. [11]Y.B. Liu, Z.G. Yang, Y.D. Li, S.M. Chen, S.X. Li, W.J. Hui, Y.Q. Weng, Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime. Mater Sci Eng A, 517 (2009) 180-184. [12]S.X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels. Int Mater Reviews, 57 (2012) 92-114. [13]Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue, 24 (2002) 1269-1274. [14]R.O. Ritchie, V.A. Chang, N.E. Paton, Influence of Retained Austenite on Fatigue Crack-Propagation in Hp9-4-20 High-Strength Alloy-Steel. Fatigue Eng Mater Struct, 1 (1979) 107-121. [15]D.Y. Wei, J.L. Gu, H.S. Fang, B.Z. Bai, Z.G. Yang, Fatigue behavior of 1500 MPa bainite/martensite duplex-phase high strength steel. Int J Fatigue, 26 (2004) 437-442. [16]C.S. Lee, K.A. Lee, D.M. Li, S.J. Yoo, W.J. Nam, Microstructural influence on fatigue properties of a high-strength spring steel. Mater Sci Eng A, 241 (1998) 30-37. [17]A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Prediction of threshold value for FGA formation. Mat Sci Eng A, 528 (2011) 6872-6877. [18]K. Tanaka, A Theory of Fatigue Crack Initiation at Inclusions. Metall Trans A, 13 (1982) 117-123. [19]Y.T. Wu, S. Mohanty, Variable screening and ranking using sampling-based sensitivity measures. Reliab Eng Syst Saf, 91 (2006) 634-647. [20]Z.Q. Lei, J.J. Xie, A.G. Zhao, Y.S. Hong, A simulation on microstructure sensitivity to very-high-cycle fatigue behavior of metallic materials. Procedia Eng, 4 (2010) 225-232. [21]Y.T. Wu, S. Mohanty, Variable screening and ranking using sampling-based sensitivity measures. Reliab Eng Syst Saf, 91 (2006) 634-647. [22]Z.Q. Lei, Y.S. Hong, J.J. Xie, C.Q. Sun, A.G. Zhao, Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Mater Sci Eng A, 558 (2012) 234-241.
RkJQdWJsaXNoZXIy MjM0NDE=