ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [3] D.B. Marshall, P.E.D. Morgan, R.M. Housley, Debonding in multilayered composites of zirconia and LaPO4. Journal of the american ceramic society, 80 (1997) 1677-1683. [4] W.J. Clegg, Design of Ceramic Laminates for Strucutral Applications. Materials Science and Technology, 14 (1998) 486-495. [5] H. Tomaszewski, H. Weglarz, A. Wajler, M. Boniecki, D. Kalinski, Multilayer ceramic composites with high failure resistance. J. of the Eur. Ceramic Society, 27 (2007) 1373-1377. [6] D.B. Marshall, J.J. Ratto, F. Lange, Enhanced fracture toughness in layered microcomposites of Ce-ZrO2 and Al2O3. J. Am. Ceram. Soc., 74 (1991) 2979-2987. [7] J. Sanchez-Herencia, J. Moya, A. Tomsia, Microstructural design in alumina-alumina/zirconia layered composites. Scripta Materialia, 38 (1998) 1-5. [8] R.J. Moon, K.J. Bowman, K.P. Trumble, J. Rödel, Fracture resistance curve behavior of multilayered alumina-zirconia composites produced by centrifugation. Acta Materialia, 49 (2001) 995-1003. [9] R. Lakshminarayanan, D.K. Shetty, R.A. Cutler, Toughening of Layered Ceramic Composites with Residual Surface Compression. J. of the American Ceramic Society, 79 (1996) 79-87. [10] M. Rao, J. Sanchez-Herencia, G. Beltz, R.M. McMeeking, F. Lange, Laminar ceramics that exhibit a threshold strength. Science, 286 (1999) 102-105. [11] V.M. Sglavo, M. Paternoster, M. Bertoldi, Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates. J. of the Amer. Ceramic Society, 88 (2005) 2826-2832. [12] M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kübler, M.H. Lewis, Apparent Fracture Toughness of Si3N4-Based Laminates with Residual Compressive or Tensile Stress in Surface Layers. Acta Materialia, 53 (2005) 289-296. [13] R. Bermejo, Y. Torres, A.J. Sánchez-Herencia, C. Baudín, M. Anglada, L. Llanes, Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Materialia, 54 (2006) 4745-4757. [14] R. Bermejo, Y. Torres, C. Baudin, A.J. Sánchez-Herencia, J. Pascual, et al., Threshold strength evaluation on an Al2O3–ZrO2 multilayered system. J Eur Ceram Soc, 27 (2007) 1443-1448. [15] R. Bermejo, R. Danzer, High failure resistance layered ceramics using crack bifurcation and interface delamination as reinforcement mechanisms. Eng. Fract. Mech., 77 (2010) 2126-2135. [16] M. He, J.W. Hutchinson, Crack Deflection at an Interface Between Dissimilar Elastic Materials. International Journal of Solids and Structures, 25 (1989) 1053-1067. [17] E. Martin, D. Leguillon, C. Lacroix, A revisited criterion for crack deflection at an interface in a brittle bimaterial. Composites Sci. Technol., 61 (2001) 1671-1679. [18] D. Leguillon, Strength or toughness? A criterion for crack onset at a notch. European Journal of Mechanics, A/Solids, 21 (2002) 61-72. [19] L. Vu-Quoc, V. Tran, Singularity analysis and fracture energy-release rate for composites: Piecewise homogeneous-anisotropic materials. Comput. Methods Appl. Mech. Eng., 195 (2006) 5162-5197. [20] M. Kotoul, O. Ševeček, T. Profant, Analysis of multiple cracks in thin coating on orthotropic substrate under mechanical and residual stresses. Eng. Fract. Mech., 77 (2010) 229-248. [21] O. Ševeček, M. Kotoul, T. Profant, Effect of higher order asymptotic terms on the competition between crack penetration and debond at a bimaterial interface between aligned orthotropic materials. Eng. Fract. Mech., 80 (2012) 28-51.

RkJQdWJsaXNoZXIy MjM0NDE=