ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- Acknowledgements We thank Agence Nationale de la Recherche France ANR-09-BLAN-0025-01 for their financial support and the company Griset for supplying copper. References [1] C. Bathias, P.C. Paris, Gigacycle fatigue in mechanical practice, editor: Marcel Dekker, ISBN 0-8247-2313-9, 2004. [2] R. Wang, H. Mughrabi, Secondary Cyclic Hardening in Fatigue in Copper Monocrystals and Polycrystals Mater. Sci. Eng., 63 (1984) 147-163. [3] C. Sommer, H. Mughrabi, D. Lochner, Influence of temperature and carbon content on the cyclic deformation and fatigue behavior of α-iron. Part II: crack initiation and fatigue life, Acta Mater., 46 (1998) 1537-1546. [4] A.W. Thompson, W.A. Backofen, “The effect of grain size on fatigue,” Acta Metall., 19, 1971, 597-605. [5] P. Lukas, L. Kunz, Cyclic slip localization and fatigue crack initiation in fcc single crystals, Mater. Sci. Eng. A 314 (2001) 75-80. [6] N.L. Phung, A. Blanche, N. Ranc, A. Chrysochoos, V. Favier, Microplasticity evolution in polycrystalline pure copper subjected to very high cycle fatigue, Conference on Very High Cycle Fatigue 5, Berlin, 2011 [7] C. Wang, D. Wagner, C. Bathias, PSB Formation in Armco Iron loaded in the gigacycle fatigue, Conference Very High Cycle Fatigue 5, Berlin, 2011 [8] T. Boulanger, A. Chrysochoos, C. Mabru, A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels', International Journal of Fatigue 26 (2004) 221 - 229. [9] C. Doudard, S. Calloch, F. Hild, S. Roux, Identification of heat source fields from infra-red thermography: Determination of ‘self-heating' in a dual-phase steel by using a dog bone sample, Mechanics of Materials 42 (2010) 55 - 62.

RkJQdWJsaXNoZXIy MjM0NDE=