13th International Conference on Fracture June 16-21, 2013, Beijing, China 10 [2] J. Bannantine, J. Comer and J. Handrock, Fundamentals of Metal Fatigue Analysis, New Jersey: Prentice Hall, 1990. [3] W. P. Mason, Piezoelectric Crystals and their Application in Ultrasonics, New York: Van Nostrand, 1956. [4] Z. Duan, X. Ma, H. Shi, R. Murai and E. Yanagisawa, “Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengths,” Acta Mechanica Sinica, vol. 27, p. 778–784, 2011. [5] Y. Furuya, “Size effects in gigacycle fatigue of high-strength steel under ultrasonic fatigue testing,” Procedia Engineering, vol. 2, p. 485–490, 2010. [6] J. M. Zhang, S. X. Li, Z. G. Yang, G. Y. Li, W. Hui and Y. Weng, “Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime,” International Journal of Fatigue, vol. 29, p. 765–771, 2007. [7] A. Atrens, W. Hoffelner, T. Duerig and J. Allison, “Subsurface crack initiation in high cycle fatigue in Ti6Al4V and in a typical martensitic stainless steel,” Scripta Metallurgica, vol. 17, pp. 601-606, 1983. [8] R. B. Waterhouse, Fretting Fatigue, Applied Science Publishers, 1981. [9] H. Attia and R. B. Waterhouse, Standardization of fretting fatigue test methods and equipment, ASTM, 1992. [10] Y. Lee, J. Pan, R. B. Hathaway and M. E. Barkey, Fatigue Testing and Analysis, Elsevier, 2005. [11] S. Söderberg, U. Bryggman and T. McCullough, “Frequency Effects In Fretting Wear,” Wear, vol. 110, pp. 19 - 34, 1986. [12] S. Söderberg, S. Nikoonezhad, K. Salama and O. Vingsbo, “Accelerated fretting wear testing using ultrasonics,” Ultrasonics, vol. 24, pp. 348-353, 1986. [13] U. Bryggman and S. Söderberg, “Contact Conditions And Surface Degradation Mechanisms In Low Amplitude Fretting,” Wear, vol. 125, pp. 39-52, 1988. [14] Z. Sun, C. Bathias and G. Baudry, “Fretting fatigue of 42CrMo4 steel at ultrasonic frequency,” International Journal of Fatigue, vol. 23, p. 449–453, 2001. [15] C. Bathias, “Piezoelectric fatigue testing machines and devices,” International Journal of Fatigue, vol. 28, p. 1438–1445, 2006. [16] ASM International, Heat Treater's Guide: Practices and Procedures for Irons and Steels, 2nd Edition ed., 1995, p. 192. [17] K. Nakazawa, N. Maruyama and T. Hanawa, “Effect of contact pressure on fretting fatigue of austenitic stainless steel,” Tribology International, pp. 79-85, 2003. [18] D. Nowell and D. Hills, “Mechanisms of Fretting Fatigue Tests,” International Journal of Mechanical Sciences, vol. 29, pp. 355-365, 1987. [19] S. Mall, H.-K. Kim, E. Saladin and W. Porter, “Effects of microstructure on fretting fatigue behavior of IN100,” Materials Science and Engineering A, vol. 527, p. 1453–1460, 2010. [20] O. Jin and S. Mall, “Effects of independent pad displacement on fretting fatigue behavior of Ti–6Al–4V,” Wear, vol. 253, p. 585–596, 2002.
RkJQdWJsaXNoZXIy MjM0NDE=