ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- the initial stages of spall in nanocrystalline copper. Phys Rev B, 74 (2006) 144110. [7] A.Yu. Kuksin, V.V. Stegailov, A.V. Yanilkin, Atomistic simulation of plasticity and fracture of nanocrystalline copper under high-rate tension. Phys Solid State, 50 (2008) 2069–2075. [8] Sh.N. Luo, T.C. Germann, D.L. Tonks, Spall damage of copper under supported and decaying shock loading. J Appl Phys, 106 (2009) 123518. [9] V.V. Zhakhovskii, N.A. Inogamov, Yu.V. Petrov, S.I. Ashitkov, K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl Surf Sci, 255 (2009) 9592–2596. [10]P.A. Zhilyaev, A.Yu. Kuksin, V.V. Stegailov, A.V. Yanilkin, Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading. Phys Solid State, 52 (2010) 1619–1624. [11] L. Campagne, L. Daridon, S. Ahzi, A physically based model for dynamic failure in ductile metals. Mech Mater, 37 (2005) 869-886. [12] A. Molinari, T.W. Wright, A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. J Mech Phys Solids, 53 (2005) 1476-1504. [13] A.E. Mayer, V.S. Krasnikov, Copper spall fracture under sub-nanosecond electron irradiation. Engng Fract Mech, 78 (2011) 1306-1316. [14] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 1, Mechanics, Butterworth-Heinemann, Oxford, 1976. [15] A.M. Kosevich, Dynamical Theory of Dislocations, Sov Phys Uspekhi, 7 (1965) 837-854. [16] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 1, Statistical physics, Part 1, Butterworth-Heinemann, Oxford, 1980. [17] V.S. Krasnikov, A.E. Mayer, A.P. Yalovets, Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations, Int J Plast, 27 (2011) 1294-1308. [18] J. Johnson, S. Lyon, Sesame equation of state, 1986. [19] S.N. Kolgatin, A.V. Khachatur’yants, Interpolation equations of state of metals, Teplofiz Vys Temp, 20 (1982) 90-94. [20]E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horovitz, S. Maman, I.B. Goldberg, D. Eliezer, Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state. Appl Phys Lett, 76 (2000) 1555–1557. [21]D. Paisley, R. Warnes, R. Kopp, in: S.C. Schmidt, R.D. Dick, J. Forbes, D.G. Tasker (Eds.), Progress in shock compression of condensed matter-1991, Elsevier, New York, 1992. [22]K.S. Holian (Ed.), T-4 Handbook of Material Properties Data Bases, LA-10160-MS, Los Alamos, UC-34, 1984. [23]Z. Kaczkowski, H.S.Nam, in: A. Hernando, V. Madurga, M.C. Sanchez-Trulillo, M. Vazquez (Eds.), Magnetic Properties of Amorphous Metals, Elsevier Science, Amsterdam, 1987. [24]G.I. Kanel, S.V. Razorenov, A.V. Utkin, K. Baumung, H.U. Karov, V. Licht, Spallations near the ultimate strength of solids, AIP Conf Proc (High-pressure science and technology–1993), 309 (1994)1043–1046. [25] G.I. Kanel, S.V. Razorenov, V.E. Fortov, Kinetics of spallation rupture in the aluminum alloy AMg6M. J Appl Mech Tech Phys, 25 (1984) 707–711. [26]G.I. Kanel, S.V. Razorenov, A.A. Bogatch, A.V. Utkin, V.E. Fortov, D.E. Grady, Spall Fracture Properties of Aluminium and Magnesium at High Temperatures. J Appl Phys. 79 (1996) 8310–8317.

RkJQdWJsaXNoZXIy MjM0NDE=