ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- [8] Chen EP. Finite element analysis of a bimaterial interface crack. Theo Appl Fract Mech, 3(1985) 257-262. [9] Gadi KS, Joseph PF, Kaya AC, Enriched finite elements for a crack tip touching an interface. in: Proceedings of the ASME Materials Division, Volume 1, MD –Vol. 69-1 IMEC&E, Los Angeles, 1995, pp. 257-263. [10] Pageau SS, Biggers SB Jr. Engriched finite elements with numerical solutions for singular stress fields. Int J Num Meth Eng 40(1997) 2693-2713. [11] Tong P, Pian THH, Lasry SJ. A hybrid element approach to crack problems in plane elasticity. Int J Num Meth Eng, 7(1973) 297-308. [12] Tan MA, Meguid SA. Analysis of bimaterial wedges using a new singular finite element. Int J Fract, 88(1997) 373-391. [13] Mote CD. Global-local finite element. Int J Num Meth Eng, 3(1971) 565-574. [14] Bradford LG, Dong SB, Nicol DAC, Westmann RA. A central crack element in fracture mechanics. Int J Fract, 24(1984) 197-207. [15] Madenci E, Shkarayev S, Sergeev B. Thermo-mechanical stresses for a triple junction of dissimilar materials: Global-local finite element analysis. Theo Appl Fract Mech, 30(1998) 103-117. [16] Barut A, Guven I, Madenci E. Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading. Int J Solids Struct, 38(2001) 9077-9109. [17] Chen DH, Nisitani H. Singular stress field near the corner of jointed dissimilar materials. J Appl Mech, 60(1993) 607-613. [18] Dundurs J. Effect of elastic constants on stress in a composite under plane deformation. J Compos Mater, 1(1967) 31-322.

RkJQdWJsaXNoZXIy MjM0NDE=