13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- measurements. References [1] V. Tvergaard, J.W. Hutchinson, Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. Int J Solids Struct 39 (2002) 3581-3597. [2] J. Kim, X. Gao, T.S. Srivatsan, Modeling of crack growth in ductile solids: a three-dimensional analysis. Int J Solids Struct 40(2003) 7357-7374. [3] J. Kim, G. Zhang, X. Gao, Modeling of ductile fracture: application of the mechanism-based concepts. Int J Solids Struct 44 (2007) 1844–62. [4] A.L. Gurson, Continuum of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. J Eng Mater Tech 99(1977) 2-55. [5] V. Tvergaard, On Localization in ductile materials containing spherical voids. Int J Fract 18(1982) 237-252. [6] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1984) 157-169. [7] M. Gologanu, J.B. Leblond, J. Devaux, Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41(1993) 1723-1754. [8] M. Gologanu, J.B. Leblond, J. Devaux, J., Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Tech 116(1994) 290-297. [9] J. Kim, X. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Frac Mech71(2004) 379-400. [10]L. Xue, T. Wierzbicki, Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75 (2008)3276–93. [11] K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27(2008) 1-17. [12]SIMULIA, ABAQUS User’s Manual (version 6.9), Providence, RI, 2008. [13]J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis-I. Micromechanics calibration. Int J Fract 89(1998) 355-373. [14]J. Koplik, A. Needleman, Void growth and coalescence in porous plastic solids. Int J Solids Struct 24(1988) 835-853. [15]C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(1980) 249–256. [16]X. Gao, T. Wang, J. Kim, On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution. Int J Solids Struct 42(2005) 5097-5117. [17]T. Pardoen, J.W. Hutchinson, An extended model for void growth and coalescence. J Mech Phys Solids 48(2000) 2467-2512. [18]D.S. Dawicke, J.C. Newman, Evaluation of fracture parameters for prediction residual strength of multi-site damage cracking, in: Proceedings from the First Joint NASA/FAA/DoD Conference on Aging Aircraft, 1997, pp. 1307–1326. [19]D.S. Dawicke, J.C. Newman, J.C., Residual strength predictions for multiple site damage cracking using a three-dimensional finite element analysis and a CTOA criterion, in: T.L. Panontin, S.D. Sheppard (Eds), Fracture Mechanics: 29th Volume. ASTM STP 1321, Philadelphia, PA, 1998, pp. 815–829.
RkJQdWJsaXNoZXIy MjM0NDE=