ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- [14] Karlsson, A.M., T. Xu, and A.G. Evans, The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Materialia, 50(2002) 1211-1218. [15] Mumm, D.R. and A.G. Evans, On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition. Acta Materialia, 48(2000) 1815-1827. [16] Ruud, J.A., et al., Strength Degradation and Failure Mechanisms of Electron‐Beam Physical ‐Vapor‐Deposited Thermal Barrier Coatings. Journal of the American Ceramic Society, 84(2001) 1545-1552. [17] Spitsberg, I.T., D.R. Mumm, and A.G. Evans, On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 394(2005) 176-191. [18] Wright, P. and A. Evans, Mechanisms governing the performance of thermal barrier coatings. Current Opinion in Solid State and Materials Science, 4(1999) 255-265. [19] Ding, J., F.X. Li, and K.J. Kang, Effects of material creep on displacement instability in a surface groove under thermo-mechanical cycling. Surface & Coatings Technology, 204(2009) 157-164. [20] Ruckle, D.L., Plasma-sprayed ceramic thermal barrier coatings for turbine vane platforms. Thin Solid Films, 73(1980) 455-461. [21] Taylor, T., D. ApplebyA E, and J. Griffiths, Plasma-sprayed yttria-stabilized zirconia coatings: structure-property relationships. Surface and Coatings Technology, 43(1990) 470-480. [22] Zhou, B. and K. Kokini, Effect of pre-existing surface crack morphology on the interfacial thermal fracture of thermal barrier coatings: a numerical study. Materials Science and Engineering: A, 348(2003) 271-279. [23] Fan, X., Zhang, W., T.J. Wang, Investigation on periodic cracking of elastic film/substrate system by the extended finite element method. Applied Surface Science, 257(2011) 6718-6724. [24] Zhang, W., X. Fan, and T. Wang, The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect. Applied Surface Science, 258(2011) 811-817. [25] Kokini, K. and Y. Takeuchi, Multiple surface thermal fracture of graded ceramic coatings. Journal of thermal stresses, 21(1998) 715-725. [26] Kokini, K., A. Banerjee, and T.A. Taylor, Thermal fracture of interfaces in precracked thermal barrier coatings. Materials Science and Engineering A, 323(2002) 70-82. [27] He, M.Y., J.W. Hutchinson, and A.G. Evans, Large deformation simulations of cyclic displacement instabilities in thermal barrier systems. Acta Materialia, 50(2002) 1063-1073. [28] Belytschko, T. and T. Black, Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(1999) 601-620. [29] ES, N.M.O., J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng, 46(1999) 131-150. [30] Melenk, J.M. and I. Babuska, The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1996) 289-314. [31] Sukumar, N., et al., Extended finite element method for three‐dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48(2000) 1549-1570. [32] Cheng, J., et al., Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system. Acta Materialia,46(1998) 5839-5850. [33] Bhatnagar, H., S. Ghosh, and M.E. Walter, A parametric study of damage initiation and propagation in EB-PVD thermal barrier coatings. Mechanics of Materials, 42(2010) 96-107.

RkJQdWJsaXNoZXIy MjM0NDE=