13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [16] R. Ebara, Long-term corrosion fatigue behaviour of structural materials, Fatigue Fract. Eng. Mater. Struct., 25 (2002) 855-859. [17] C. Bathias, K. El Alami, T.Y. Wu, Influence of mean stress on ti6a14v fatigue crack growth at very high frequency, Engineering Fracture Mechanics, 56 (1997) 255-264. [18] S. Stanzl-Tschegg, Ultrasonic Fatigue, in: K.H.J.B. Editors-in-Chief: , W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick (Eds.) Encyclopedia of Materials: Science and Technology (Second Edition), Elsevier, Oxford, 2001, pp. 9444-9449. [19] S. Kovacs, T. Beck, L. Singheiser, Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime, International Journal of Fatigue (accepted for publication), (2012). [20] Zhou, Turnbull, Influence of pitting on the fatigue life of a turbine blade steel, Fatigue Fract. Eng. Mater. Struct., 22 (1999) 1083-1093. [21] D. Dengel, Die arc sin √P-Transformation — ein einfaches Verfahren zur grafischen und rechnerischen Auswertung geplanter Wöhlerversuche, Materialwissenschaft und Werkstofftechnik, 6 (1975) 253-261. [22] Y. Murakami, T. Nomoto, T. Ueda, On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions, Fatigue Fract. Eng. Mater. Struct., 23 (2000) 893-902. [23] Y. Murakami, T. Nomoto, T. Ueda, On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part II: influence of hydrogen trapped by inclusions, Fatigue Fract. Eng. Mater. Struct., 23 (2000) 903-910. [24] T. Nakamura, H. Oguma, Y. Shinohara, The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA fracture surface in high strength steel, Procedia Engineering, 2 (2010) 2121-2129. [25] Z.G. Yang, S.X. Li, Y.D. Li, Y.B. Liu, W.J. Hui, Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime, Materials Science and Engineering: A, 527 (2010) 559-564. [26] T. Petersmeier, U. Martint, D. Eifler, H. Oettelt, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121, International Journal of Fatigue, 20 (1998) 251-255. [27] H. Döker, Fatigue crack growth threshold: implications, determination and data evaluation, International Journal of Fatigue, 19 (1997) 145-149. [28] H. Döker, Schwellenwert für Ermüdungsrissausbreitung: Bestimmung und Anwendung, Fortschritte der Bruch- und Schädigungsmechanik, (2002) 9-18. [29] P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, E. Kerscher, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia, 67 (2012) 838-841.
RkJQdWJsaXNoZXIy MjM0NDE=