ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- [6] Y. Murakami, Mechanisms of fatigue failure in ultralong life regime in: S. Stanzl-Tschegg and H. Mayer (Eds), Proc. Int. Conf. on ‘Fatigue in the very high cycle range’, Vienna, Austria, University of Agricultural Sciences, 2001, pp. 11–22. [7] Y. Murakami, T. Nomoto, T. Ueda, Factors influencing the mechanism of superlong fatigue failure in steels, Fatigue Fract. Eng. Mater. Struct., 22 (1999) 581–590. [8] Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, Int. J. Fatigue, 16 (1994) 163–182. [9] T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use, J. Soc. Mech. Eng. Int. J. Ser. A, 3A (2009) 425–439. [10] K. Shiozawa, Y. Morii, S. Nishino, L. Lu, Subsurface crack initiation and propagation mechanism in high strength steel in a very high cycle fatigue regime, Int. J. Fatigue, 28 (2006) 1521–1532. [11] C. R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, H. Danninger, Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel, Int. J. Fatigue, 30 (2008) 2191–2199. [12] T. H. Myeong, Y. Yamabayashi, M. Shimojo, Y. Higo, A new life extension method for high cycle fatigue using micro martensitic transformation in austenitic stainless steel, Int. J. Fatigue, 19 (1997) 69-73. [13] T. Nebel, Verformungsverhalten und Mikrostruktur zyklisch beanspruchter metastabiler austenitischer Stähle, Dissertation, 2002, Kaiserlautern. [14] M. Hayashi, K. Enomoto, Effect of preliminary surface working on fatigue strength of type 304 stainless steel at ambient temperature and 288°C in air and pure water environment, Int. J. Fatigue, 28 (2006) 1626-1632. [15] M. Nakajima, M. Akita, Y. Uematsu, K. Tokaji, Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel, Proc. Eng., 2 (2010) 323-330. [16] C. Bathias, Gigacycle fatigue in mechanical practice, Marcel Dekker, 2005, New York. [17] P. M. Hilgendorff, A. Grigorescu, M. Zimmermann, C.-P. Fritzen, H.-J. Christ, The effect of damage accumulation in slip bands on the resonant behavior in the very high cycle fatigue (VHCF) regime, Proc. of the 13th Int. Conf. on Fracture, 2013, Beijing. [18] K. H. Bowe, E. Hammerschmidt, E. Hornbogen, M. Hühner, Bruchmechanische Eigenschaften von metastabilen Austeniten, Materialwiss. Werkstofftech., 19 (1988) 193-201. [19] Y. Murakami, H. Matsunaga, The effect of hydrogen on fatigue properties of steels used for fuel cell systems, Int. J. Fatigue, 28 (2006) 1509-1520. [20] A. J. McEvily, J. L. Gonzalez Velazquez, Fatigue crack tip deformation processes influenced by the environment, Metall. Trans., 23A (1992) 2211-2221. [21] Y. Murakami, T. Nomoto, T. Ueda, On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles), Part 1: Influence of hydrogen trapped by inclusions, Fatigue Fract. Eng. Mater.Struct., 23 (2000) 893-902.

RkJQdWJsaXNoZXIy MjM0NDE=