ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [7] C. R. Sohar, A. Kotas, C. Gierl, B. Weiss. Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel. Int. J. Fa.t, 30 (2008), 1137–1149. [8] K. Tokaji, M. Kamakura, Y. Ishiizumi Y, N. Hasegawa. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. Int. J. Fat., 26 (2004), 1217-1224. [9] F. Yang , S. M. Yin, S. X. Li. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mat Sci. Eng A. 491 (2008), 131–136. [10] N. Miura, Y. Takahashi. High-cycle fatigue behaviour of type 316 stainless steel at 288 C including mean stress effect. Int. J. Fat., 28 (2006), 1618-1625. [11] T. Sakai, Y. Sato, N. Oguma. Fat. Fract. Engng. Mat. Struct., 25 (2001), pp 765-773. [12] Chai G. Fatigue behaviour of duplex stainless steels in the very high cycle regime. Int. J. Fat., 28 (2006), 1611–1617. [13] I. Marines, G. Dominguez, G. Baudry. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int. J. Fat., 25 (2003), 1037–1046. [14] D. K. Xu, L. Liu,Y. B Xua. The crack initiation mechanism of the forged Mg–Zn–Y–Zr alloy in the super-long fatigue life regime. Scripta Mater., 56 (2007), 985-994. [15] J. Man, M. Petrenec, K. Obrtlik and J. Polak. Acta Mater., 52 (2004), 5551–5561. [16] J. Polak, T. Kruml, K. Obrtlik and J. Man. Proc. Engng., 2 (2010), 883–892. [17] J. Polak, J. Man, K and Obrtlik K. Int. J. Fat. 25 (2003), 1027–1036. [18] Khan M. K. Wang Q. Y. To be published. [19] H. Mughrabi, K. Herz, X. Stark. Cyclic deformation and fatigue behaviour of alpha-iron mono- and polycrystals. Int. J. Fract. 17 (1981), 193-220.

RkJQdWJsaXNoZXIy MjM0NDE=