ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- Hence, a set of miniature fatigue specimens have been fatigued with an ultrasonic fatigue testing machine and afterwards analyzed by means of synchrotron tomography. It is planed that these test data should assist in the near future the FE modeling. Acknowledgements The support of this work by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. References [1] K. Tanaka, T. Mura: A Dislocation Model for Fatigue Crack Initiation, J. Applied Mech., 48 (1981) 63. [2] K.S. Chan: A Microstructure-Based Fatigue Crack Initiation Model, Met. Mat. Trans. A, 34A (2003) 43. [3] M. C. Marinelli: Activated slip systems and microcrack path in LCF of a duplex stainless steel, Mat. Sci. Eng. A, 509, (2009), 81. [4] B.I. Voronenko: Austenitic – Ferritic Stainless Steels: A State-Of-The-Art Review, Met. Sci. and Heat Treatm. 39 (1997) 428. [5] O. Düber, Untersuchung zum Ausbreitungsverhalten mikrostrukturell kurzer Ermüdungsrisse in zweiphasigen metallischen Werkstoffen am Beispiel eines austenitisch-ferritischen Duplexstahls, PhD Thesis, University of Siegen 2007. [6] T. Zhai: The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys, Int. J. Fatigue, 27 (2005) 1202. [7] M. Herbig: 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Mater. 59 (2011) 590. [8] Y. Huang: A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program, Mech Report 178, Division of Engineering and Applied Sciences, Harvard University, Cambridge, 1991. [9] W. Schaef: A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries, Acta Mater., 59 (2011) 1849.

RkJQdWJsaXNoZXIy MjM0NDE=