ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- SiC-whisker reinforced diboride ultra-high-temperature ceramics. Scr Mater, 59 (2008) 55–58. [13] Q.N. Liu, S.H. Meng, C.P. Jiang, F. Song, Critical Biot's number for determination of the sensitivity of spherical ceramics to thermal shock. Chin Phys Lett, 27 (2010) 088104. [14] D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc, 52 (1969) 600–604. [15] X.H. Zhang, Z. Wang, C.Q. Hong, P. Hu, W.B. Han, Modification and validation of the thermal shock parameter for ceramic matrix composites under water quenching condition. Mater Des, 30 (2009) 4552–4556. [16] W.G. Li, F. Yang, D.N. Fang, Thermal shock modeling of ultra-high temperature ceramics under active cooling. Comp Math Applic, 58 (2002) 2373–2378. [17] Z.H. Jin, W.J. Luo, Thermal shock residual strength of functionally graded ceramics, Mater Sci Eng A, 435-436 (2006) 71–77. [18] Z.H. Jin, Y.W. Mai, Effects of damage on thermal shock strength behavior of ceramics. J Am Ceram Soc, 78 (1995) 1873–1881. [19] B. Cotterell, S.W. Ong, C.D. Qin, Thermal shock and size effects in castable refractories. J Am Ceram Soc, 78 (1995) 2056–2064. [20] S. Kim, A simple direct estimation of temperature-dependent thermal conductivity with Kirchoff transformation, Int Comm Heat Mass Transfer, 28 (2001) 537-544. [21] F. Erdogan, B.H. Wu, Crack problems in FGM layers under thermal stresses. J Therm Stress, 19 (1996) 237–265. [22] X.M. Zhang, L. Wan, B. Yan, P.Y. Zhang, Engineering Mechanics. Tsinghua University Press, Beijing, 2012. [23] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium. J Am Ceram Soc, 90 (2007) 1347–1364.

RkJQdWJsaXNoZXIy MjM0NDE=