ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [10] A. Portevin and F. Le Chatelier, Sur un Phénomène Observé lors de l’Essai de Traction d'Alliages en Cours de Transformation, Comptes Rendus de l'Académie des Sciences (CRAS), 176, (1923), 507-510. [11] A.H. Cottrell and B.A. Bilby, Dislocation Theory of Yielding and Strain Ageing of Iron, Proc. Phys. Soc. London, A62, (1949), 49-62. [12] A.H. Cottrell, A Note on the Portevin-Le Chatelier Effect, Philos. Mag., 44, (1953), 829-832. [13] R. A. Mulford and U. F. Kocks, New Observations on the Mechanisms of Dynamic Strain Aging and Jerky Flow, Acta Metall., 27, (1979), 1125-1134. [14] R.W. Hayes and C.W. Hayes, On the Mechanism of Delayed Discontinuous Plastic Flow in an Age-Hardened Nickel Alloy, Acta Metall., 30, (1982), 1295-1301. [15] P. Frenandez-Zelalia, unpublished research, Mechanical Engineering, Georgia Tech, 2012. [16] H. Tresca, On Further Applications of the Flow of Solids, Proc. Inst. Mech. Engrs., London, 30, (1878), 301-345. [17] J.D. Eshelby and P.L. Pratt, Note on the Heating Effect of Moving Dislocations, Acta. Metall., 4, (1956), 560-562. [18] H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, 2nd ed., Oxford University Press, 1947. [19] C.S. Coffey and R.W. Armstrong, Description of 'Hot Spots' Associated with Localized Shear Zones in Impact Tests, in: Shock Waves and High Strain Rate Phenomena in Metals: Concepts and Applications, eds. M.A. Meyers and L.E. Murr, Plenum Press, N.Y., 1981, 313-324 [20] A.K. Head, Dislocation Group Dynamics, VI: The Release of a Pile- up, Philos. Mag., 27, (1973), 531-539. [21] J.C.M. Li and Y.T. Chou, The Role of Dislocations in the Flow Stress Grain Size Relationship, Metall. Trans., 1, (1970), 1145-1159. [22] J.A. Ewing and J.C.W. Humfrey, The Fracture of Metals under Repeated Alterations of Stress, Philos. Trans. Roy. Soc. London, 221A, (1903), 241-253. [23] A.H. Cottrell and D. Hull, Extrusion and Intrusion by Cyclic Slip in Copper, Proc. Roy. Soc. London, 242A, (1957), 211-213. [24] H. Mughrabi, F. Ackermann, and K. Herz, Persistent Slipbands in Fatigued Face-Centered and Body-Centered Cubic Metals, in: Fatigue Mechanisms, ed. J.T. Fong, ASTM STP 675, ASTM, Philadelphia, PA, (1979), 69-105. [25] H. Mughrabi, Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage, Metall. Mater. Trans., 40A, (2009), 1257-1279. [26] L.M. Brown and S.L. Ogin, Role of Internal Stresses in the Nucleation of Fatigue Cracks, in: Fundamentals of Deformation and Fracture, eds. B.A. Bilby, K.J. Miller and J.R. Willis, Cambridge University Press, Cambridge, U.K., 1985, pp. 501-528. [28] H. Mughrabi, M. Bayerlein and R. Wang, in: Proc. 9th Int. Conf. on the Strength of Metals and Alloys (ICSMA 9), eds. D.G. Brandon, R. Chaim, and A. Rosen, Freund Publishing Company Ltd., London, 2, (1991), 879-886. [29] M.D. Sangid, H.J. Maier, and H. Sehitoglu, The Role of Grain Boundaries on Fatigue Crack Initiation – an Energy Approach, Int. J. Plast., 27 (2011), 801-821. [30] S.D. Antolovich, S. Bashir and Ph. Taupin, Low Cycle Fatigue of As-HIP and HIP + Forged René 95, Metall. Trans., 10A, (1979), 1481-1490.

RkJQdWJsaXNoZXIy MjM0NDE=