ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- Fracture and Microstructure on 9Cr-1Mo-V-Nb Steel Welded Joint Creep-ruptured after Long Term, Tetsu-to-Hagane, 90(4) (2004) 206-212 (in Japanese). [5] T. Ogata, T. Sakai, M. Yaguchi, Damage characterization of a P91 steel weldment under uniaxial and multiaxial creep, Mater Sci Eng A, 510–511 (2009) 238–243. [6] H. Hongo, M. Tabuchi, T. Watanabe, Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints, Metall Mater Trans A, 43A (2012) 1163-1173. [7] A.T. Yokobori, Jr., K. Abe, H. Tsukidate, T. Ohmi, R. Sugiura, H. Ishikawa, Micro mechanics based on vacancy diffusion coupled with damage mechanics related to creep deformation and prediction of creep fracture life, Mater High Temp, 28(2) (2011) 126-136. [8] S. Nakajima, T. Nemoto, A.T. Yokobori, Jr., Lifetime prediction of stress induced voiding failure by novel numerical analysis in Cu interconnects with an ultra low-k dielectric, Proc AMC, (2009) 751-755. [9] H. Shigeyama, T. Nemoto, A.T. Yokobori, Jr., Prediction of stress induced voiding reliability in Cu damascene interconnect by computer aided vacancy migration analysis, Jpn J Appl Phys, 50 (2011) 05EA05 1-6. [10]H. Shigeyama, A.T. Yokobori, Jr., T. Ohmi, T. Nemoto, Analysis of stress induced voiding using by finite element analysis coupled with finite difference analysis, Defect Diffus Forum, 326-328 (2012) 632-640. [11] H.H. Johnson, Calibrating the electric potential method for studying slow crack growth, Mater Res Stand, 5 (1965) 442-445. [12]K.H. Schwalbe, D. Hellmann, Application of the electrical potential method to crack length measurements using Johnson's formula, J Test Eval, 9(3) (1981) 218-221. [13] A.T. Yokobori, Jr., T. Nemoto, K. Satoh, T. Yamada, Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip, Eng Fract Mech, 55(1) (1996) 47-60. [14] A.T. Yokobori, Jr., Y. Chinda, T. Nemoto, K. Sato, T. Yamada, The characteristics of hydrogen diffusion and concentration around a crack tip concerned with hydrogen embrittlement, Corro Sci, 44(3) (2002) 407-424. [15]A.T. Yokobori, Jr., T. Ohmi, T. Murakawa, T. Nemoto, T. Uesugi R. Sugiura, The application of the analysis of potential driven particle diffusion to the strength of materials, Strength, Fract Complex, 7 (2011) 215-233. [16]A.T. Yokobori, Jr., T. Uesugi, M. Sendoh, M. Shibata, The effect of stress wave form on corrosion fatigue crack growth rate on the basis of hydrogen diffusion theory, Strength, Fract Complex, 1(4) (2003) 187-204. [17]T. Nemoto, A.T. Yokobori, Jr., T. Murakawa, H. Miura, Numerical Analysis of Vacancy Transport by Residual Stress in Electromigration on LSI Interconnects, Jpn J Appl Phys, 49 (2010) 024301 1-7. [18]T. Yokobori, Strength of Materials, Iwanami, Tokyo, 1964. [19]A.T. Yokobori Jr., S. Takmori, T. Yokobori, Y. Hasegawa, K. Kubota, K. Hidaka, Mechanical Behavior and Strengthening Mechanism of W containing 9-12% Cr Steels under Creep Conditon for a Cracked Specimen, Key Eng Mater, 171-174 (2000) 131-138. [20]R. Sugiura, A.T. Yokobori Jr., S. Takamori, M. Tabuchi, A. Fuji, M. Yoda, K. Kobayashi, T. Yokobori, Effects of Alloying Additions and Material Microstructure on the Accuracy of the Predictive Law of Creep Crack Growth for W-Strengthened 9-12%Cr Ferritic Heat-Resistant Steel, Mater Trans, 48(11) (2007) 2928-2936. [21]Y. Nagumo, A.T. Yokobori, Jr., R. Sugiura, T. Matsuzaki, The occurrence mechanism of periodicity of creep crack path for P92, J ASTM Int, 8(8) (2011) 1-11.

RkJQdWJsaXNoZXIy MjM0NDE=