increased with increasing ΔK resulted in a higher crack growth rate in the fast fracture state. Acknowledgements This work was supported by the National Natural Science Foundation of China under Contract No.51205030, Energy efficient and clean use of open fund of Key Laboratory of Colleges and Universities in Hunan Province (2010NGQ007, and Key Project of Chinese Ministry of Education (No. 211136). References [1] S. Suresh, A. Mortensen, Functionally graded metals and metal-ceramic composites: Part 2. Thermo-mechanical behavior. Int. Mater. Rev. 42(1997) 85-116. [2] Y. Sahin, Preparation and some properties of SiC particle reinforced aluminum alloy composites. Mater. Des. 24(2003) 671-679. [3] F. Wang, B. Yang, X.J. Duan, B.Q. Xiong, J.S. Zhang, The microstructure and mechanical properties of spray-deposited hypereutectic Al-Si-Fe alloy. J. Mater. Proc. Technol.137(2007) 191-194. [4] E.J. Lavernia, Spray atomization and deposition processing of particulate reinforced metal matrix composites. Key. Eng. Mater. 53-55(1991) 153-159. [5] N. Chawla, V.V.Ganesh, B.Wunsh, Thress-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites. Script. Mater. 51(2004) 161-165. [6] J. Huang, J. E. Spowart, J. W. Jones, The role of microstructural variability on the very high-cycle fatigue behavior of discontinuously-reinforced aluminum metal matrix composites using ultrasonic fatigue. Int. J. Fat. 32(2010) 1243-1254. [7] N. Chawla, C. Andres, L. C. Davis, J. W. Jones, J. E. Allison, The interactive role of inclusion and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Metall. Mater. Trans. A. 31(2000) 951-957. [8] J. Llorca, J. Ruiz, J. C. Healy, M. Elices, C. J. Beevers, Fatigue crack propagation in salt water, air and high vacuum in a spray-formed particulate-reinforced metal matrix composite. Mater. Sci. Eng. A. 185(1994) 1-15. [9] J. N. Hall, J. W. Jones, A. K.Sachdev, Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiCp composites. Mater. Sci. Eng. A. 183(1994) 69-80. [10] Y.Sugimura, S Suresh. Effects of SiC contents on fatigue crack growth in aluminum alloys reinforced with SiC particles. Metall. Trans. A, 1992, 23(1992) 2231-2242. [11] N.Chawla, C. Andres, J.W. Jones, J.E. Allison, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite, Metall. Mater. Trans. 29(1998) 2843-2854. [12] F M Xu, S J Zhu, J Zhao, M Qi, F G Wang, S X Li, Z G Wang, Fatigue crack growth in SiC particulates reinforced Al matrix graded composite. Mater. Sci. Eng. A. 360(2003) 191-496. [13] G Liu, D Zhu, J K Shang, Enhanced fatigue Crack growth resistance at elevated
RkJQdWJsaXNoZXIy MjM0NDE=