ICF13A

[3]. T.N. Baker, editor, The Yield, Flow and Fracture Strength of Metals, Applied Science Publishers, London, 1983. [4]. H. Liebowitz, editor, A Special Issue in Honor of Professor Takeo Yokobori On the Occasion of His 70th Birthday, Engineering Fracture Mechanics, 28, [5-6], 481-816 (1987). [5]. K.S. Chan, editor, George R. Irwin Symposium on Cleavage Fracture, Minerals, Metals, and Materials Society, Warrendale, PA, 1998. [6]. E. Orowan, Zur Kristallplastizitaet, Zeitschrift fur Physik, 89, 605-659 (1934) [7]. M. Polanyi, Ueber ine Art von Gitterstoerung, die einemkristal plastich machen koennte, Zeitschrift fur Physik, 89, 660-664 (1934). [8]. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals, Proceedings of the Royal Society of London A, 145, 362-404 (1934). [9]. A.H. Cottrell, Theory of brittle fracture in steel and similar metals, Transactions of the American Institute of Mining and Metallurgical Engineers, 212, 192-203 (1958). [10]. N.J. Petch, The ductile-brittle transition in the fracture of α-iron, Philosophical Magazine, 3, 1089-1127 (1958). [11]. D.M.R. Taplin and A. Saxena, ICF: The World Academy of Structural Integrity – retrospective and prospective, Strength, Fracture and Complexity, 7, 109-121 (2011). [12]. T. Yokobori, The Cottrell-Bilby theory of yielding of iron, Physical Review, 88, 1423 (1952). [13]. B.A. Bilby, A.H. Cottrell and K.H. Swinden, The spread of plastic yield from a notch, Proceedings of the Royal Society of London A, 272, 304-314 (1963). [14]. G.R. Irwin, Plastic zone near a crack and fracture toughness, in: Mechanical and Metallurgical Behavior of Sheet Materials, 7th Sagamore Ordnance Materials Research Conference, Syracuse University Research Institute, NY, 1961, pp. 63-78. [15]. J.F. Knott, Sir Alan Cottrell: Fracture and Structural Integrity, The UK Forum for Engineering Structural Integrity (FESI) Bulletin, 7, [1], 5 pp. (2013). [16]. L.M. Brown, Cracks and extrusions caused by persistent slip bands, Philosophical Magazine, in print (2013). [17]. D. Hull, A.H. Cottrell at Harwell in the mid-1950s, Philosophical Magazine, DOI:10.1080/14786435.2013.765990 (2013). [18] A.H. Cottrell and B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proceedings of the Physical Society of London, A62, 49-62 (1949). [19]. E.O. Hall, The deformation and ageing of mild steel; Discussion of results, Proceedings of the Physical Society of London, B64, 747-753 (1951). [20]. N.J. Petch, The cleavage strength of polycrystals, Journal of the Iron and Steel Institute, 174, 25-29 (1953). [21]. D. Hull and I.L. Mogford, Ductile Brittle Transition in Steels Irradiated with Neutrons, Philosophical Magazine, 3, 1213ff (1958). [22]. R.W. Armstrong, Stress – Grain Size Analysis of the Ductile – Brittle Transition for Steel and Similar Metals, Radiation Metallurgy Section, Solid State Division Progress Report, Oak Ridge National Laboratory, ORNL-4020 (July 1966). [23]. R.W. Armstrong, Influence of polycrystal grain size on several mechanical properties of materials, Metallurgical Transactions, 1, 1169-1176 (1970). [24]. E. Orowan, Notch Brittleness and the Strength of Materials, Transactions of the Institute of Engineers and Shipbuilders of Scotland, 89, 165-215 (1946). [25]. R.W. Armstrong, Dislocation Mechanics Description of Polycrystal Plastic Flow and Fracturing Behaviors, in: Mechanics of Materials; Fundamentals and Linkages, edited by M.A. Meyers, R.W. Armstrong and H.O.K. Kirchner, McGraw-Hill Publishers, N.Y., 1999, Chap. 10, pp. 363-398; see Fig. 10.19. [26]. E.T. Wessel, Variations in the embrittlement of irradiated pressure vessel steels, in: Fracture, (ICF0), Technology Press of MIT, N.Y., 1959, pp. 147ff.

RkJQdWJsaXNoZXIy MjM0NDE=