ICF13A

[27]. Y.T. Chou, F. Garofalo and R.W. Whitmore, Interactions between glide dislocations in a double pile-up in α-iron, Acta Metallurgica, 8, 480-488 (1960). [28]. G.T. Hahn, B.L. Averbach, W.S. Owen and M. Cohen, Initiation of cleavage microcracks in polycrystalline iron and steel, in: Fracture, (ICF0), Technology Press of MIT, N.Y., 1959, pp. 91ff. [29] S.D. Antolovich and K.O. Findley, A new look at attractive/repulsive junctions and cleavage crack formation in bcc materials, Engineering Fracture Mechanics, 77, 201-216 (2010). [30]. A.S. Keh, J.C.M. Li and Y.T. Chou, Cracks due to the piling-up of dislocations on two intersecting slip planes in MgO single crystals, Acta Metallurgica, 7, [10], 694-696 (1959). [31]. R.W. Armstrong and C.Cm. Wu, Lattice Misorientation and Displaced Volume for Microhardness Indentations in MgO Crystals, Journal of the American Ceramic Society, 61, [3-4], 102-106 (1978). [32]. R.W. Armstrong and W.L. Elban, Dislocation Aspects of Plastic Flow and Cracking at Indentations in Magnesium Oxide and Cyclotrimethylenetrinitramine Explosive Crystals, in: Microindentation Techniques in Materials Science and Engineering, edited by P.J. Blau and B.R. Lawn, ASTM STP 889, American Society for Testing and Materials, 1986, pp. 109-126. [33]. W.L. Elban and R.W. Armstrong, Plastic Anisotropy and Cracking at Hardness Impressions in Single Crystal Ammonium Perchlorate, Acta Materialia, 46, [17], 6041-6052 (1998). [34]. A. Kelly, Strong Solids, Clarendon Press, Oxford, U.K., 1966. [35]. Theoretical Strength of Materials, U.S. National Academy of Science, Materials Advisory Board, Publication MAB-221-M (1966). [36]. K. Kitajima, On the mechanism of cleavage of crystals. In: International Conference on Fracture (ICF1), Sendai (1965). [37]. A. Kelly, W.R. Tyson and A.H. Cottrell, Ductile and brittle crystals, Philosophical. Magazine, 15, 567-586 (1967). [38]. A.N. Stroh, The Formation of Cracks as a Result of Plastic Flow, Proceedings of the Royal Society of London A, 223, 404-414 (1954). [39]. A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London A, 221, 163-198 (1920-21). [40]. R.W. Armstrong, Cleavage crack propagation within crystals by the Griffith mechanism versus a dislocation mechanism, Materials Science and Engineering, 1, 250-254 (1966). [41]. J.R. Rice and R. Thomson, Ductile versus Brittle Behaviour of Crystals, Philosophical Magazine, 29, 73-97 (1974). [42]. J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, Journal of the Mechanics and Physics of Solids, 40, 239-271 (1992). [43]. G. Xu, Dislocation Nucleation from Crack Tips and Brittle to Ductile Transitions in Cleavage Fracture, in: Dislocations in Solids, edited by F.R.N. Nabarro and J.P. Hirth, Elsevier B.V., Oxford, 2004, 12, Chap. 65, pp. 81-145. [44]. D.S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8, 100ff (1960). [45]. R.W. Armstrong, Crack size and grain size dependence of the brittle fracture stress, in: Dritte Iinternationale Tagung uber den Bruch (ICF3), edited by A Kochendorfer, Verein Deutscher Eisenhuttenleute, Duesseldorf, 1973, Paper III-421, 6 pp. [46]. R.W. Armstrong and O. Cazacu, Indentation fracture mechanics toughness dependence on grain size and crack size: Application to alumina and WC-Co, International Journal of Refractory Metals and Hard Materials, 24, 129-134 (2006); see Fig. 1. [47]. B.A. Bilby, Dislocations and Cracks, Dritte Internationale Tagung den Bruch (ICF3), edited by A. Kochendorfer, Verein Deutscher Eisenhuttenleute, Duesseldorf, 1973, Paper PLI-III. [48]. R.W. Armstrong, The (cleavage) strength of pre-cracked polycrystals, Engineering Fracture Mechanics, 28, [5-6], 529-538 (1987).

RkJQdWJsaXNoZXIy MjM0NDE=