13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Figure 9. Comparisons of the computed and measured load-displacement curves for C(T) specimen without residual stress and with compressive residual stress. Acknowledgements This research is supported by the Ship Structures Committee and the Naval Surface Warfare Center, Carderock Division. References [1] T. Panontin, M. Hill, The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models. Int J Fract 82(1996) 317-333. [2] J. Almer, J. Cohen, R. Winholtz, The effects of residual macrostresses and microstresses on fatigue crack propagation. Metall Mater Trans A 29(1998) 2127-2136. [3] W. Meith, M. Hill, T. Panontin, Analytical & Experimental Study of Fracture in Bend Specimens Subjected to Local Compression, in: W.G. Reuter, R.S. Piascik (Eds), Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, Philadelphia, PA, 2003, pp. 426-444. [4] A. Mahmoudi, C. Truman, D. Smith, Using local out-of-plane compression (LOPC) to study the effects of residual stress on apparent fracture toughness. Eng Fract Mech 75(2008) 1516-1534. [5] X. Gao, T. Zhang, J. Zhou, S.M. Graham, M. Hayden, C. Roe, On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int J Plas 27(2011) 217-231. [6] J. Zhou, X. Gao, M. Hayden, J.A. Joyce, Modeling the ductile fracture behavior of an aluminum alloy 5083-H116. Eng Fract Mech 85(2012) 103-116. [7] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1985) 31-48. [8] M. Wilkins, R. Streit, J. Reaugh, Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests. Technical Report UCRL-53058, Lawrence Livermore National Lab., CA , 1980. [9] L. Xue, T. Wierzbicki, Ductile Fracture Characterization of Aluminum Alloy 2024-T351 Using Damage Plasticity Theory. Int J Appl Mech 1(2009) 267-304. [10]Y. Li, T. Wierzbicki, M.A. Sutton, J. Yan, X. Deng, Mixed mode stable tearing of thin sheet AI 6061-T6 specimens: experimental measurements and finite element simulations using a modified Mohr-Coulomb fracture criterion. Int J Fract 168(2011) 53-71. [11] SIMULIA, ABAQUS User’s Manual (version 6.9), Providence, RI, 2008. 220 kN LOPC As-received
RkJQdWJsaXNoZXIy MjM0NDE=