ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [4] F. Minami, A. Bruckner-Foit, D. Munz, B. Trolldenier, Estimation procedure for the Weibuli parameters used in the local approach. Int J Fract 54 (1992) 197-210. [5] C. Ruggieri, R.H. Dodds Jr., A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. Int J Fract 79 (1996) 309-340. [6] X. Gao, R.H. Dodds Jr., Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model. Int J Fract 102 (2000) 43–69. [7] J.P. Petti, R.H. Dodds Jr., Calibration of the Weibull stress scale parameter, σu, using the Master Curve. Eng Fract Mech 72 (2005) 91–120. [8] B. Wasiluk, J.P. Petti, R.H. Dodds Jr., Temperature dependence of Weibull stress parameters: Studies using the Euro-material. Eng Fract Mech 73 (2006) 1046–1069. [9] P. Akbarzadeh, S. Hadidi-Moud, A.M. Goudarzi, Global equations for Weibull parameters in a ductile-to-brittle transition regime. Nucl Eng Design 239 (2009) 1186–1192. [10] Y. Cao, H. Hui, G. Wang, F.-Z. Xuan, Inferring the temperature dependence of Beremin cleavage model parameters from the Master Curve. Nucl Eng Design 241 (2011) 39-45. [11] G. Xiaosheng, G. Zhang, T.S. Srivatsan, A probabilities model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Mater Sci Eng 415A (2006) 264-272. [12] M. Kroon, J. Faleskog, H. Oberg, A probabilistic model for cleavage fracture with a length scale – Parameter estimation and predictions of growing crack experiments. Eng Fract Mech 75 (2008) 2398-2417. [13] S.R. Bordet, A.D. Karstensen, D.M. Knowles, C.S. Wiesner, A new statistical local criterion for cleavage fracture of steel. Part I: model presentation. Eng Fract Mech 72 (2005) 435-452. [14] J. Hohe, V. Hardenacke, S. Luckow, D. Siegele, An enhanced probabilistic model for cleavage fracture assessment accounting for local constraint effects. Eng Fract Mech 77 (2010) 3573-3591. [15] A.P. Jivkov, D.P.G. Lidbury, P. James, Assessment of local approach methods for predicting end-of-life toughness of RPV steels. In Proc PVP2011 (2011) paper 57546, Baltimore, USA. [16] J. Hohe, V. Friedmann, J. Wenck, D. Siegele, Assessment of the role of micro defect nucleation in probabilistic modeling of cleavage fracture, Eng Fract Mech 75 (2008) 3306–3327. [17] K. Wallin, T. Saario, K. Torronen, Statistical model for carbide induced brittle fracture in steel. Metals Sci 18 (1984) 13-16. [18] L.C.A. Folch, F.M. Burdekin, Application of coupled brittle-ductile model to study correlation between Charpy energy and fracture toughness values. Eng Fract Mech 63 (1999) 57-80. [19] G. Bernauer, W. Brocks, W. Schmitt, Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Eng Fract Mech 64 (1999) 305-325. [20] A. Pineau, Modeling ductile to brittle fracture transition in steels - micromechanical and physical challenges. Int J Fract 150 (2008) 129–156. [21] E. Keim, Summary of material data for 22NiMoCr37. Areva ANP GmbH, Technical Report, 2005. [22] S.R. Ortner, J. Duff, Characterisation of Euro ‘A’ reference steel for application of EOH model of brittle fracture. Nexia Solutions, Technical Report, 2005. [23] ASTM E 1921-05, Standard Test Method for Determination of Reference Temperature T0 for Ferritic Steels in the Transition Range. ASTM, 2005. [24] ABAQUS 6.11, DS Simulia Corp, 2011. [25] A. Hung, I. Yarovsky, J. Muscat, S. Russo, I. Snook, R.O. Watts, First-principles study of metallic iron interfaces. Surface Sci 501 (2002) 261-269.

RkJQdWJsaXNoZXIy MjM0NDE=