13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- activation energy close to the activation energy for oxygen diffusion along the grain boundaries. References [1] D. Fournier, A. Pineau, Low cycle fatigue behavior of Inconel 718 at 298K and 823K, Met. Trans. 8A, 1977, pp. 1095-1105. [2] M. Clavel, A. Pineau, Frequency and waveform effects on the fatigue crack growth behavior of alloy 718 at 298K and 823K, Met. Trans. 9A, 1978, pp. 471-480. [3] M. Clavel, A. Pineau, Fatigue behaviour of two nickel-base alloys I: Experimental results on low cycle fatigue, fatigue crack propagation and substructure, Mat. Sci. Eng. 25, 1982, pp. 157-171; II: Physical modeling of the fatigue crack propagation process, Mat. Sci. Eng. 25, 1982, pp. 173-180. [4] L.A. James, W.J. Mills, Effect of heat treatment and heat-to-heat variations in the fatigue crack growth response of alloy 718, Engng. Fract. Mech. 22, 1985, pp. 797-817. [5] J.P. Pédron, A. Pineau, The effect of microstructure and environment on the crack growth behaviour of Inconel 718 alloy at 650°C under fatigue, creep and combined loading, Mat. Sci. Eng. 56, 1982, pp. 143-156. [6] J.E. King, Fatigue crack propagation in nickel-base superalloys – Effects of microstructure, load ratio and temperature, Mat. Sci. Eng. 3, 1987, pp. 750-764. [7] H.H. Smith, D.J. Michel, Effect of environment on fatigue crack propagation behavior of alloy 718 at elevated temperature, Met. Trans. 17A, 1986, pp. 370-374. [8] M.R. Bache, W.J. Evans, M.C. Hardy, The effects of environment and loading waveform on fatigue crack growth in Inconel 718, Int. J. Fatigue, 21, 1999, pp. S69-S77. [9] G.A. Osinkulu, G. Onofrio, M. Marchionni, Fatigue crack growth in polycrystalline IN 718 superalloy, Mat. Sci. Eng., A 356, 2003, pp. 425-433. [10]D. Gustafsson, J.J. Moverare, S. Johansson, K. Simonsson, M. Hörnqvist, T. Månsson, S. Sjöström, Influence of high temperature hold times on the fatigue crack propagation in Inconel 718, Int. J. Fatigue, 33, 2011, pp. 1461-1469. [11] M. Hörnqvist, T. Månsson, D. Gustafsson, High temperature fatigue crack growth in Alloy 718 – Effect of tensile hold times, Proc. Eng., 10, 2011, pp. 147-152. [12]D. Gustafsson, J. Moverare, K. Simonsson, S. Johansson, M. Hörnqvist, T. Månsson, S. Sjöström, Fatigue crack growth behaviour of Inconel 718 – The concept of a damaged zone caused by high temperature hold times, Proc. Eng., 10, 2011, pp. 2821-2826. [13]S. Floreen, The creep fracture of wrought nickel-base alloys by a fracture mechanics approach, Met. Trans. 6A, 1975, pp. 1741-1749. [14] J.P. Pédron, A. Pineau, Influence de l’oxydation sur la propagation des fissures à haute température dans l’alliage Inconel 718, Mémoires et Etudes Scientifiques Revue de Métallurgie, 1983, pp. 665-674. [15]K. Sadananda, P. Shahinian, Creep crack growth in Alloy 718, Met. Trans. 8A, 1977, pp. 439-449. [16]A. Pineau, Development of the local approach to fracture over the past 25 years: Theory and applications, Int. J. Fracture, 138, 2006, pp. 139-166. [17]F.A. McClintock, On the plasticity of the growth of fatigue cracks, in D.C. Drucker, J.J. Gilman, Fracture of solids, Interscience Publishers, John Wiley & Sons, New York, London, 1962, pp. 65-102. [18]R.M. Pelloux, Mechanisms of formation of ductile striations, ASM Trans., 62, 1969, pp. 221-285. [19]D.A. Woodford, Gas phase embrittlement and time dependent cracking of nickel based superalloys, Energy Materials 1, 2006, pp. 59-79.
RkJQdWJsaXNoZXIy MjM0NDE=