ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Cremel and O. Bouaziz from ArcelorMittal Research for Auger spectrometry measurements. References [1] C. Naudin, A. Pineau, J.- M. Frund, Numerical modeling of fracture toughness in RPV steel containing segregated zones in PVP 443-1, Fatigue, Fracture and Damage Analysis, ASME PVP 2002-1333, 2002, pp. 69-75. [2] A. Andrieu, A. Pineau, J. Besson, D. Ryckelynck, O. Bouaziz, Bimodal Beremin-type model for brittle fracture of inhomogeneous ferritic steels: Theory and applications, Eng. Fract. Mech. 95, 2002, pp. 84-101. [3] A. Pineau, Development of the local approach to fracture over the past 25 years: Theory and applications, Int. J. Fract. 138, 2006, pp. 139-166. [4] F. M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Mater. Trans. A14, 1983, pp. 2277-2287. [5] A. Andrieu, A. Pineau, J. Besson, D. Ryckelynck, O. Bouaziz, Beremin model : Methodology and application to the prediction of the Euro toughness data set, Eng. Fract. Mech. 95, 2002, pp. 102-117. [6] D. McLean, Grain boundaries in metals, Oxford University Press, London, 1957. [7] M. Guttmann, Ph. Dumoulin, M. Wayman, The thermodynamics of interactive cosegregation of phosphorus and alloying elements in iron and temper-brittle steels, Met. Trans. 13A, 1982, pp. 1693-1711. [8] K. Wallin, Fracture toughness of engineering materials, EMAS Publishing, Warrington, U.K., 2011. [9] ASTM standards E1921-97, Standard test method for determination of reference temperature, To, for ferritic steels in the transition range, 1997, pp. 1068-1084. [10] A. Andrieu, PhD thesis Ecole des Mines de Paris, 2013. [11] P. Lejcek, Grain boundary segregation in metals, Springer Heidelberg, Dordrecht, London, New York, 2010. [12] M. Militzer, J. Wieting, Theory of segregation kinetics in ternary systems, Acta Metall. 34, 1986, pp. 1229-1236. [13] S. G. Druce, G. Gage, G. Jordan, Effect of ageing on properties of pressure vessel steels, Acta Metall. 34, 1986, pp. 641-652. [14] C. A. Hippsley, S. G. Druce, The influence of phosphorus segregation to particle/matrix interfaces on ductile fracture in a high strength steel, Acta Metall. 31, 1983, pp. 1861-1872. [15] K.H.D.H. Badeshia, R.W.K . Honeycombe, Steels – Microstructure and properties, 3rd edition, Butterworth-Hennemann, Oxford,UK, 2006. [16] H. Erhart, H. J. Grabke, Equilibrium segregation of phosphorus at grain boundaries of Fe-P, Fe-C-P, Fe-Cr-P and Fe-Cr-C-P alloys, Metal Science 15, 1981, pp. 401-408. [17] J. R. Rice, J.- S. Wang, Embrittlement of interfaces by solute segregation, Mater. Sci. Engng A107, 1989, pp. 23-40. [18] C. Naudin, J.- M. Frund, A. Pineau, Intergranular fracture stress and phosphorous grain boundary segregation of a Mn-Ni-Mo steel, Scripta Mater. 40, 1999, pp. 1013-1019. [19] R. Ding, A. Islam, S. Wu, J. Knott, Effect of phosphorus segregation on fracture properties of two quenched and tempered structural steels, Mater. Sci. and Tech. 21, 2005, pp. 467-475. [20] Y. Qiao, A. S. Argon, Cleavage crack-growth resistance of grain boundaries in polycrystalline Fe-2% Si alloy: experiment and modeling, Mech. Materials 35, 2003, pp. 129-154. [21] W. Lu, J. Chen, X. Kong, S. S. Chakravarthula, Y. Qiao, Non uniform cleavage across persistent grain boundary, Mech. Materials 43, 2011, pp. 567-573.

RkJQdWJsaXNoZXIy MjM0NDE=