ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- Advanced Materials, 2011. 23: p. 5130-5147. 4. Pollock, T.M., et al., Integrated computational materials engineering: A transformational discipline for improved competitiveness and national security. 2008, National Research Council of the National Academies: Washington, D.C. 5. Evans, A.G., Design and life prediction issues for high temperature engineering ceramic and their composites. Acta Materialia, 1997. 45: p. 23-40. 6. Marshall, D.B. and B.N. Cox, Integral textile ceramic structures. Annual Review of Materials Research, 2008. 38: p. 425-443. 7. Badel, P., et al., Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Composites Science and Technology, 2008. 68: p. 2433-2440. 8. Desplentere, F., et al., Micro-CT characterization of variability in 3D textile architecture. Composite Science and Technology, 2005. 65: p. 1920-1930. 9. Mahadik, Y., K.A. Robson Brown, and S.R. Hallett, Characterisation of 3D woven composite internal architecture and effect of compaction. Composites, Part A, 2010. 41: p. 872-880. 10. Lee, S.-B., et al., Pore geometry in woven fiber structures: 0/90 plain-weave cloth layup preform. Journal of Materials Research, 1998. 13(5): p. 1209-1217. 11. Kinney, J.H., et al., X-ray tomographic study of chemical vapor infiltration processing of ceramic composites. Science, 1993. 260: p. 789-792. 12. Coindreau, O., G. Vignoles, and P. Cloetens, Direct 3D microscale imaging of carbon-carbon composites with computed holotomography. Nuclear Instruments and Methods in Physics Research B, 2003. 200: p. 308-314. 13. Bale, H., et al., Characterizing Three-Dimensional Textile Ceramic Composites using Synchrotron X-Ray Micro-Computed-Tomography. Journal of the American Ceramic Society, 2011. 95(1): p. 392-402. 14.Argon, A.S., Fracture of composites. Treatise of Materials Sciences and Technolgy. Vol. 1. 1972, New York: Academic Press. 15. Budiansky, B., Micromechanics. Composite Structures, 1983. 16(1): p. 3-12. 16. Cox, B.N., et al., Mechanisms of compressive failure in 3D composites. Acta Metallurgica et Materialia, 1992. 40: p. 3285-3298. 17. Fleck, N.A. and B. Budiansky, Compressive failure of fibre composites due to microbuckling, in Inelastic Deformation of Composite Materials, G.J. Dvorak, Editor. 1991, Springer-Verlag: New York. p. 235-274. 18. Fleck, N.A. and J.Y. Shu, Microbuckle initiation in fibre composites: a finite element study. Journal of the Mechanics and Physics of Solids, 1995. 43(12): p. 1887-1918. 19. Marshall, D.B., et al., Transverse strengths and failure mechanisms in Ti3Al matrix composites. Acta Metallurgica et Materialia, 1994. 42: p. 2657-2673. 20. Pineau, P., G. Couegnat, and J. Lamon, Virtual testing applied to transverse multiple cracking of tows in woven ceramic composites. Mechanics Research Communications, 2011. 38(8): p. 7. 21. Cox, B.N. and W.L. Morris, Monte Carlo simulations of the growth of small fatigue cracks. Engineering Fracture Mechanics, 1988. 31: p. 591-610. 22. Groeber, M., et al., A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Materialia, 2008. 56: p. 1274-1287. 23. Jiao, Y., F.H. Stillinger, and S. Torquato, A superior descriptor of random textures and its predictive capacity. Proceedings of the National Academy of Science of the USA, 2009. 106(42):

RkJQdWJsaXNoZXIy MjM0NDE=