13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- Fracture Mechanics 75/11 (2008), 3520-3533 [5] Linse, T.; Kuna, M.; Schuhknecht, J.; Viehrig, H.-W. : Application of the small-punch-test to irradiated reactor vessel steels in the brittle-ductile transition region, Journal of ASTM International, Vol. 5, No. 4, (2008) [6] Bicego, V.; Cerutti, P.; Foulds, J.; Hurst, R.; Matocha, K.; Abendroth, M.: CEN - European Committee for Standardization Workshop 21: Small Punch Test Method for Metallic Materials Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behaviour, final Draft12/2006 [7] Beremin, F.M.: A local criterion for cleavage fracture of a nuclear pressure vessel steel. In: Metallurgical Transactions A 14A (1983), 2277-2287 [8] Mudry, F.: A local approach to cleavage fracture. In: Nuclear Engineering and Design 105 (1987), 65-76 [9] Pijaudier-Cabot, P., Z. P. Baant, M. Tabbara: Comparison of various models for strainsoftening, Engineering Computations 5 (2) (1988), 141 – 150. [10] R. de Borst, L. Sluys, H.-B. Mühlhaus, J. Pamin: Fundamental issues in finite element analyses of localization of deformation, Engineering Computations 10 (2) (1993), 99–121. [11] Jirasek, M. Nonlocal models for damage and fracture: Comparison of approaches. International Journal of Solids and Structures, (35) 31-32:4133-4145, 1998 [12] Peerlings, R.H.J.; Geers, M.G.D.; de Borst, R.; Brekelmans, W.A.M. A critical comparison of nonlocal and gradient-enhanced softening continua. International Journal of Solids and Structures, (38) 44-45: 7723-7746, 2001 [13] Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: part I - Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–5, 1977 [14] Tvergaard,V. Influence of voids on shear band instabilities under plane strain conditions. Int J Fracture 17:389–407, 1981 [15] Tvergaard, V., A. Needleman. Analysis of the cup-cone fracture in a rod tensile bar. Acta Metallurgica, 32:157–169, 1984. [16] Linse, T. et al.: Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain. In: Engineering Fracture Mechanics (2012). [17] Bordet et al.: A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. In: Engineering Fracture Mechanics 72 (2005), 435–452. [18] Gao, X. et al: Calibration of Weibull stress parameters using fracture toughness data. In: International Journal of Fracture 92 (1998), 175–200. [19] Gao, X. et al: A Weibull stress model to predict cleavage fracture in plates containing surface cracks. In: Fatigue and Fracture of Engineering Materials and Structures 22 (1999), 481–493. [20] Gao, X. et al: Weibull stress model for cleavage fracture under high-rate loadingWeibull stress model for cleavage fracture under high-rate loading. In: Fatigue and Fracture of Engineering Materials and Structures 22 (1999), 481–493. [21] Gao, X. et al: Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. In: Materials Science and Engineering A.394 (Okt. 2005), 210–219. [22] Gao, X. et al: A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. In: Materials Science and Engineering A.415 (Okt. 2006), 264–272.
RkJQdWJsaXNoZXIy MjM0NDE=