ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [23] Kroon, M., J. Faleskog. A probabilistic model for cleavage fracture with a length scaleinfluence of material parameters and constraint. In: International Journal of Fracture 118 (2002), 99–118. [24] Bernauer, G. et al: Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. In: Engineering Fracture Mechanics 64 (1999), 305–325 [25] Corana, A.; Marchesi, M. ; Martini, C. ; Ridella, : Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm. In: ACM Transactions on Mathematical Software 13 (1987), Nr. 9, 262-280 [26] Gray, G. A., T. G. Kolda. Algorithm 856: APPSPACK 4.0: Asynchronous Parallel Pattern Search for Derivative-Free Optimization. In: ACM Transactions on Mathematical Software 32.3 (2006), 485–507. [27] Plantenga, T. D. HOPSPACK 2.0 User Manual. Techn. Ber. SAND2009-6265. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2009. [28] Griffin, J. D. et al: Asynchronous Parallel Generating Set Search For Linearly-Constrained Optimization. Techn. Ber. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2006. [29] Kolda, T. et al: Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. In: SIAM Review 45.3 (2003), 385–482. [30] Kolda, T. et al: Stationarity results for generating set search for linearly constrained optimization. In: SIAM Journal on Optimization 17.4 (2006), 943– 968. [31] A. Khalili, A., K. Kromp. Statistical properties of Weibull estimators. In: Journal of Materials Science 26 (24 1991), 6741–6752. [32] Minami, F. et al: Estimation procedure for the Weibull parameters used in the local approach. In: International Journal of Fracture 54 (1992), 197–210. [33] Riesch-Oppermann, H., A Brückner-Foit. WEISTRABA: A code for the numerical analysis of Weibull stress parameters from ABAQUS finite element stress analysis - procedural background and code description. Techn. Ber. FZKA 6155. Forschungszentrum Karlsruhe, Institut für Materialforschung, 1998. [34] Wallin, K. et al: Applicability of miniature size bend specimens to determine the master curve reference temperature T0. In: Engineering Fracture Mechanics 68.11 (2001), 1265 –1296. [35] Grimpe, F. et al: Influence of temperature, strain rate and specimen geometry on the microscopic cleavage fracture stress. In: Nuclear Engineering and Design 188.2 (1999), 155 – 160. [36] J. P. Petti, J. P., R. H. Dodds. Calibration of the Weibull stress scale parameter σu using the Master Curve. In: Engineering Fracture Mechanics 72.1 (2005), 91 –120. [37] Seebich, H.-P. Mikromechanisch basierte Schädigungsmodelle zur Beschreibung des Versagensablaufs ferritischer Bauteile. Dissertation. Universität Stuttgart, 2007. [38] Wasiluk, B. et al: Temperature dependence of Weibull stress parameters: Studies using the Euro-material. In: Engineering Fracture Mechanics 73 (2006), 1046–1069. [39] Tanguy, B. et al: Ductile to brittle transition of an A508 steel characterized by Charpy impact test Part II: modeling of the Charpy transition curve. In: Engineering Fracture Mechanics 72 (2005), 413–434

RkJQdWJsaXNoZXIy MjM0NDE=