ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -6- [15] Y. Song, Y. Zhang, J. Zhang, D. Lu, Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256 (2010) 6313-6317. [16] X. Li, B. Bhushan, K. Takashima, C. Baek, Y. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97 (2003) 481-494. [17] Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, et al. The SIESTA Method for ab Initio Order-N Materials Simulation. J Phys: Condens Matter 2002;14:2745-79. [18] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117 (1995) 1. [19] M.Z. Bazant, E. Kaxiras, J.F. Justo, Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 56 (1997) 8542. [20] J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Interatomic potential for silicon defects and disordered phases. Phys. Rev. B 58 (1998) 2539. [21] F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (1985) 5262. [22] P. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71 (2005) 035211. [23] M. I. Baskes. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46 (1992) 2727. [24] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distribututions. Phys. Rev. A 31 (1985) 1695-1697. [25] A. Bondi, van der Waals Volumes and Radii. J. Phys. Chem., 68 (1964) 441-451. [26] Y. Jing, Q. Meng, Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires. Physica B 405 (2010) 2413-2417. [27] O. A. Shenderova, D. W. Brenner, A. omeltchenko, X. Su, Atomistic modelling of the fracture of polycrystalline diamond. Phys. Rev. B 61 (2000) 3877-3888. [28] H. Zhao, K. Min, N. R. Aluru, Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension. Nano Lett. 9 (2009) 3012-3015. [29] Y. Jing, Q. Meng, W. Zhao, Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E 41 (2009) 685-689.

RkJQdWJsaXNoZXIy MjM0NDE=