ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [5] X.P. Xu , A. Needleman, Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids 42 (1994) 1397-1434. [6] X.W.Zeng, Shaofan Li, A multiscale cohesive zone model and simulations of fractures. Comput. Methods Appl. Mech. Engrg. 199 (2010) 547–556. [7] X.W. Zhou, J.A. Zimmerman et al, Molecular dynamics simulation based cohesive surface representation of mixed mode fracture, Mechanics of Materials 40 (2008) 832-845. [8] X.W. Zhou, N.R. Moody, R.E. Jonesa, J.A. Zimmermana, E.D. Reedyc, Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch. Acta Materialia, 57 (2009) 4671–4686. [9] V.Yamakov, E.Saether, D.R.Phillipsc, E.H. Glaessgen. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. Journal of the Mechanics and Physics of Solids. 54 (2006) 1899–1928. [10] J.T. Lloyd, J.A. Zimmerman, R.E. Jones, X.W. Zhou, D.L. McDowell, Finite element analysis of an atomistically derived cohesive model for brittle fracture. Modelling Simul. Mater. Sci. Eng., 19 (2011) 065007. [11] X.W. Zhou, H.N.G.Wandley, R.A.Johnson, D.J.Larson. Atomic scale structure of sputtered metal multilayers[J]. Acta materialia. 49 (2001) 4005~4015. [12] H.N.G.Wadley, X.Zhou, R.A.Johnson, M.Neurock. Mechanisms, Models and Methods of Vapor deposition. Progress in Materials Science. 46 (2001) 329-377. [13] D. Farkasa, M. Durandurua, W. A. Curtinb , C. Ribbensc. Multiple-dislocation emission from the crack tip in the ductile fracture of Al 81(2001)1241-1255. [14] K. Gall, M.F. Hostemeyer, M.V. Schilfgaarde, M.I. Baskes, Atomistic simulations on the tensile debonding of an aluminum–silicon interface. J Mech Phys Solids, 48 (2000) 2183–212. [15] C.R.Dandekar, Yung C. Shin, Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics. Composites: Part A 42 (2011) 355–363. [16] H. Krull, Huang Yuan. Suggestions to the cohesive traction-separation law from atomistic simulations. Engineering Fracture Mechanics. 78 (2011) 525-533.

RkJQdWJsaXNoZXIy MjM0NDE=