13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- The authors would like to acknowledge the support of the Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities (No.CXLX12_0140), NUAA Research Funds (No. S0896-013 and No. 56XZA12044), the Innovation and Entrepreneurship Program of Jiangsu and PAPD. In addition, the authors are also indebted to Miss Shiyang Hu for her kind help in winding the copper coil. References [1] C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A, 52 (1996) 8-11. [2] H. A. Sodano, D. J. Inman, G. Park, A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig., 36 (2004) 197-205. [3] S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram., 19 (2007) 165-182. [4] J. J. McCoy, Harvesting mechanical energy via structural vibrations. J. Acoust. Soc. Am., 130 (2011) 1783-1786. [5] P. G. Jones, S. P. Beeby, N. M. White, Towards a piezoelectric vibration-powered microgenerator. IEE Proc.-Sci. Meas. Technol., 148 (2001) 68-72. [6] S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct., 13 (2004) 1131-1142. [7] J. Hu, J. Jong, C. Zhao, Vibration energy harvesting based on integrated piezoelectric components operating in different modes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 (2010) 386-394. [8] E. E. Aktakka, H. Kim, K. Najafi, Energy scavenging from insect flight. J. Micromech. Microeng., 21 (2011) 095016. [9] F. Lu, H. P. Lee, S. P. Lim, Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct., 13 (2004) 57-63. [10] M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A, 92 (2001) 335-342. [11] B. Yang, C. Lee, W. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low, H. Feng, Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng., 19 (2007) 035001. [12] M. Umeda, K. Nakamura, S. Ueha, Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator. Jpn. J. Appl. Phys., 35 (1996) 3267-3273. [13] M. Renaud, P. Fiorini, C. V. Hoof, Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Mater. Struct., 16 (2007) 1125-1135. [14] S. Moss, A. Barry, V. Powlesland, S. Galea, G.P. Carman, A low profile vibro-impacting energy harvester with symmetrical stops. Appl. Phys. Lett., 97 (2010) 234101. [15] L. Gu, C. Livermore, Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct., 20 (2011) 045004. [16] W. T. Thomson, M. D. Dahleh, Theory of Vibration with Applications, 5th ed., Prentice-Hall, New York, 1998. [17] W. H. Hayt, Jr., J. E. Kemmerly, S. M. Durbin, Engineering Circuit Analysis, 6th ed., McGraw-Hill, New York, 2002.
RkJQdWJsaXNoZXIy MjM0NDE=