ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- [6] W. H. Wang, Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. J Appl Phys, 110 (2011) 053521. [7] C. Schuh, T. Hufnagel,U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater, 55 (2007) 4067-4109. [8] M. W. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annu Rev Mater Res, 38 (2008) 445-469. [9] A. S. Argon, Plastic deformation in metallic glasses. Acta Metall, 27 (1979) 47-58. [10] F. Spaepen, Defects in amorphous metals. 1981, Les Houches Lectures XXXV on Physics of Defects edited by R. Balian et al. (North-Holland, Amsterdam). p. 133-174. [11] W. Johnson,K. Samwer, A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence. Phys Rev Lett, 95 (2005) 195501. [12] M. L. Falk,J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 57 (1998) 7192-7205. [13] M. Q. Jiang,L. H. Dai, On the origin of shear banding instability in metallic glasses. J Mech Phys Solids, 57 (2009) 1267-1292. [14] P. Thamburaja,R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification. J Mech Phys Solids, 55 (2007) 1236-1273. [15] H. Zhang, S. Maiti,G. Subhash, Evolution of shear bands in bulk metallic glasses under dynamic loading. J Mech Phys Solids, 56 (2008) 2171-2187. [16] R. Hill, Acceleration waves in solids. J Mech Phys Solids, 10 (1962) 1-16. [17] J. W. Rudnicki,J. R. Rice, Conditions for the localization of deformation in pressue-sensitive dilatant materials. J Mech Phys Solids, 23 (1975) 371-394. [18] R. Hill,J. W. Hutchinson, Bifurcation phenomena in the plane tension test. J Mech Phys Solids, 23 (1975) 239-264. [19] J. R. Rice, ed. The localization of plastic deformation. ed. Theoretical and Applied Mechanics e W T K p-P t I, North-Holland, Amsterdam. 1977. [20] Y. F. Gao, L. Wang, H. Bei,T. G. Nieh, On the shear-band direction in metallic glasses. Acta Mater, 59 (2011) 4159-4167. [21] H. H. Ruan, L. C. Zhang,J. Lu, A new constitutive model for shear banding instability in metallic glass. Inter J Solids Struct, 48 (2011) 3112-3127. [22] A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I- yield criteria and flow rules for porous ductile media. Transactions of the ASME, 99 (1977) 2-15. [23] W. L. Johnson, J. Lu,M. D. Demetriou, Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self consistent dynamic free volume model. Intermetallics, 10 (2002) 1039-1046. [24] K. M. Flores,R. H. Dauskardt, mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater, 49 (2001) 2527-2537. [25] C. A. Schuh,A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass. Nat Mater, 2 (2003) 449-452. [26] C. H. Hsueh, H. Bei, C. T. Liu, P. F. Becher,E. P. George, Shear fracture of bulk metallic glasses with controlled applied normal stresses. Scripta Mater, 59 (2008) 111-114. [27] J. Fornell, A. Concustell, S. Suriñach, W. H. Li, N. Cuadrado, A. Gebert, M. D. Baró,J. Sort,

RkJQdWJsaXNoZXIy MjM0NDE=