ICF13A

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- temperature. Acta Metall, 37(4) (1989) 1089–1097. [14]Q. Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. International Journal of Fatigue, 24(12) (2002) 1269-1274. [15]Y. Murakami, T. Nomoto, T. Ueda, On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue Fract. Engng. Mater. Struct., 23(11) (2000) 893-902. [16] K. Tanaka, T. Mura, A dislocation model for fatigue crack initiation. J. Appl. Mech., 48 (1981) 97–103. [17]A. Brückner-Foit, X. Huang, Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading. International Journal of Fatigue, 28(9) (2006) 963-971. [18]N. Jezernik, J. Kramberger, T. Lassen, S. Glodez, Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue & Fracture of Engineering Materials & Structures, 33 (2010) 714–723. [19]D. Broek, The Practical Use of Fracture Mechanics. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989. [20]P. Paris, F. Erdogan, A critical analysis of crack propagation laws. Journal of Basic Engineering, 85 (1963) 528–534. [21]R.J. Dexter, P.J. Pilarski, H.N. Mahmoud, Analysis of crack propagation in welded stiffened panels. International Journal of Fatigue, 25 (2003) 1169-1174. [22]H.N. Mahmoud, R.J. Dexter, Propagation rate of large cracks in stiffened panels under tension loading. Marine Structures 18 (2005) 265-288. [23]Y. Sumi, Ž. Božić, H. Iyama, Y. Kawamura, Multiple Fatigue Cracks Propagating in a Stiffened Panel. Journal of the Society of Naval Architects of Japan, 179 (1996) 407-412. [24] W. Elber, The significance of fatigue crack closure. Damage tolerance in aircraft structures. ASTM STP 486. American Society for Testing & Materials; (1971) 230–242. [25]R. Bao, X. Zhang, N. A. Yahaya, Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods. Engineering Fracture Mechanics, 77 (2010) 2550–2566. [26]Swanson Analysis System, Inc. ANSYS User's Manual Revision 11.0, 2009. [27]Ž. Božić, H. Wolf, D. Semenski, Fatigue Growth of Multiple Cracks in Plates under Cyclic Tension. Transactions of FAMENA, 34(1) (2010) 1 – 12. [28]Ž. Božić, S. Schmauder and M. Mlikota, Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key Engineering Materials, 488-489 (2012) 525-528. [29]Y. Liu, S. Mahadevan, Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Engineering Fracture Mechanics, 74, 2007, 332–345.

RkJQdWJsaXNoZXIy MjM0NDE=