ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Research Letters, 35 (2012) 51-62. [12] E. Eberhardt, D. Stead, B. Stimpson, Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36 (1999) 361-380. [13] SC. Lovejoy, Acoustic Emission Testing of Beams to Simulate SHM of Vintage Reinforced Concrete Deck Girder Highway Bridges. Structural Health Monitoring, 7 (2008) 329-346. [14] A. Carpinteri, G. Lacidogna, G. Niccolini, S. Puzzi, Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica, 43 (2008) 349-363. [15] A. Anzani, L. Binda, RG. Mirabella, The effect of heavy persistent actions into the behaviour of ancient masonry. Materials and Structures, 33 (2000) 251-261. [16] T. Kosel, I. Grabec, P. Muzic, Location of acoustic emission sources generated by air flow. Ultrasonics, 38 (2000) 824-826. [17] CU. Grosse, F. Finck, Quantitative evaluation of fracture processes in concrete using signal-based acoustic emissions techniques. Cement & Concrete Composites, 28 (2006) 330-336. [18] J. Kurz, CU. Grosse, HW. Reinhardt, Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics, 43 (2005) 538-546. [19] J. Xu, Energy emissions from critical phenmena and applications to structural health monitoring. Politecnico di Torino, Structural Engineering Department, 2012. [20] M. Baer, U. Kradolfer, An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of Ameria, 77 (1897) 1437-1445. [21] J. Xu, An Effective Way to Validate Signal Arrival Time in AE Structural Monitoring. Advanced Materials Research, 163-167 (2010) 2471-2476.

RkJQdWJsaXNoZXIy MjM0NDE=