ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Acknowledgements We acknowledge the ENGIN-X beamline allocation from ISIS, UK. Bo Chen thanks the financial support from EDF Energy and useful discussions with Mr Mike Spindler, EDF Energy. David Smith is supported by the Royal Academy of Engineering, EDF Energy and Rolls Royce plc. The authors also acknowledge the useful discussions and suggestions from Prof. Alan Cocks and Mr Jia Nan Hu at University of Oxford. References [1] H.J. Frost, M.F. Ashby, Deformation-mechanism Maps, Pergamon, Exeter, 1982. [2] D.G. Morris, Creep in Type 316 stainless steel, Acta Metall., 26 (1978) 1143-1151. [3] D.G. Morris, D.R. Harries, Metal Sci., 12 (1978) 525-531. [4] M. Biberger, J.C. Gibeling, Analysis of creep transients in pure metals following stress changes, Acta Metall. Mater., 43 (1995) 3247–3260. [5] B. Chen, P.E.J. Flewitt, D.J. Smith, A.C.F. Cocks, A review of the changes to internal state related to high temperature creep of polycrystalline metals and alloys, Int. Mater. Rev., (to be published). [6] C.N. Ahlquist, W.D. Nix, The measurement of internal stresses during creep of Al and Al-Mg alloys, Acta Metall., 19 (1971) 373-385. [7] S. Straub, W. Blum, H.J. Maier, T. Ungar, A. Borbely, H. Renner, Long-range internal stresses in cell and subgrain structures of copper during deformation at constant stress, Acta Mater., 44 (1996) 4337-4350. [8] M.A. Morris, J.L. Martin, Microstructural dependence of effective stresses and activation volumes during creep, Acta Metall., 32 (1984) 1609-1623. [9] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall., 32 (1984) 57-70. [10]B. Derby, M.F. Ashby, A microstructural model for primary creep, Acta Metall., 35 (1987) 1349-1353. [11] L. Esposito, N. Bonora, A primary creep model for class M materials, Mater. Sci. Eng. A 528 (2011) 5496-5501. [12]J.N. Hu, B. Chen, D.J. Smith, A.C.F. Cocks, A self-consistent model in the local residual stress evaluation of 316H stainless steel, 13th Int. Conf. Fract., Beijing, (2013). [13]J.R. Santisteban, M.R. Daymond, J.A. James, L. Edwards, ENGIN-X: a third-generation neutron strain scanner, J. Appl. Cryst. 39 (2006) 812-825. [14]M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, T. Lorentzen, Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra, J. Appl. Phys., 82 (1997) 1554-1562. [15]H. Mecking, U.F. Kocks, Kinetics of flow and strain hardening, Acta Metall., 29 (1981) 1865-1875. [16]P.S. Follansbee, U.F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall. 36 (1988) 81-93. [17]M.R. Daymond, P.J. Bouchard, Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures, Metall. Mater. Trans. A 37 (2006) 1863-1873. [18]U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171-273.

RkJQdWJsaXNoZXIy MjM0NDE=