ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- References [1] J. Pettersson, H. Asteman, J. Svensson, L. Johansson, KCl Induced Corrosion of a 304-type Austenitic Stainless Steel at 600°C; The Role of Potassium, Oxidation of Metals. 64 (2005) 2341. [2] R. Viswanathan, K. Coleman, U. Rao, Materials for ultra-supercritical coal-fired power plant boilers, Int. J. Pressure Vessels Piping. 83 (2006) 778-783. [3] L.H. de Almeida, I. Le May, P.R.O. Emygdio, Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels, Mater Charact. 41 (1998) 137-150. [4] W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, H. Hänninen, Microstructural manifestation of dynamic strain aging in AISI 316 stainless steel, J. Nucl. Mater. 395 (2009) 156-161. [5] M.A. Soare, W.A. Curtin, Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals, Acta Materialia. 56 (2008) 4046-4061. [6] A.W. Sleeswyk, Slow strain-hardening of ingot iron, Acta Metallurgica. 6 (1958) 598-603. [7] S. Hong, S. Lee, Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel, J. Nucl. Mater. 340 (2005) 307-314. [8] K.G. Samuel, S.L. Mannan, P. Rodriguez, Serrated yielding in AISI 316 stainless steel, Acta Metallurgica. 36 (1988) 2323-2327. [9] P. Rodriguez, Serrated plastic flow, Bulletin of Materials Science. 6 (1984) 653-663. [10] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scr. Mater. 61 (2009) 737-740. [11] R. Lagneborg, Recovery creep in materials hardened by a second phase, J. Mater. Sci. 3 (1968) 596-602. [12] G.R. Stewart, A.M. Elwazri, S. Vue, J.J. Jonas, Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels, Materials Science and Technology. 22 (2006) 519-524. [13] M. Calmunger, G. Chai, S. Johansson, J. Moverare, Influence of Dynamic Strain Ageing on Damage in Austenitic Stainless Steels, ECF19. (2012). [14] M. Speicher, A. Klenk, K. Maile, E. Roos, Behaviour of Ni-based alloys for fossil-fired power plant components in the long-term creep regime, Advanced Materials Research. 278 (2011) 241-246. [15] O.H. Ibrahim, I.S. Ibrahim, T.A.F. Khalifa, Effect of Aging on the Toughness of Austenitic and Duplex Stainless Steel Weldments, Journal of Materials Science & Technology. 26 (2010) 810-816. [16] E.A. Trillo, R. Beltran, J.G. Maldonado, R.J. Romero, L.E. Murr, W.W. Fisher, A.H. Advani, Combined effects of deformation (strain and strain state), grain size, and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel, Mater Charact. 35 (1995) 99-112. [17] S.K. Mannan, R.K. Dayal, M. Vijayalakshmi, N. Parvathavarthini, Influence of deformation on sensitization kinetics and its microstructural correlation in a nuclear grade 316 stainless steel, J. Nucl. Mater. 126 (1984) 1-8. [18] N. Parvathavarthini, R.K. Dayal, Time–temperature-sensitization diagrams and critical cooling rates of different nitrogen containing austenitic stainless steels, J. Nucl. Mater. 399 (2010) 6267. [19] A.Y. Kina, V.M. Souza, S.S.M. Tavares, J.M. Pardal, J.A. Souza, Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service, Mater Charact. 59 (2008) 651-655.

RkJQdWJsaXNoZXIy MjM0NDE=