ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- Acknowledgements This effort was supported by Siemens Energy Inc., Orlando, FL. The interactions with Phillip Gravett, Sachin Shinde, and Saiganesh Iyer are appreciated. References [1] Z. Mazur, A. Luna-Ramirez, J.A. Juarez-Islas, A. Campos-Amezcua, Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng Failure Analysis, 12 (2005) 474-486. [2] R.C. Reed, The Superalloys - Fundamentals and Applications, Cambridge, 2006. [3] E. Mazza, M. Hollenstein, S. Holdsworth, R.P. Skelton, Notched specimens thermo- mechanical fatigue of a 1CrMoV turbine steel. Nuclear Eng Design. 234 (2004) 11-24. [4] F. Colombo, E. Mazza, S.R. Holdsworth, R.P. Skelton, Thermo-mechanical fatigue tests on uniaxial and component-like 1CrMoV rotor steel specimens. Int J Fatigue, 30 (2008) 241-248. [5] R.A. Kupkovits, R.W. Neu, Thermomechanical fatigue of a directionally-solidified Ni-base superalloy: Smooth and cylindrically-notched specimens. Int J Fatigue, 32 (2010) 1330-1342. [6] Z.J. Moore, R.W. Neu, Creep-fatigue of a directionally-solidified Ni-base superalloy – smooth and cylindrically notched specimens. Fatigue Fracture Eng Mater Struct, 34 (2010) 17-31. [7] ABAQUS v6.9.Dassault Systèmes: Providence, RI, 2009. [8] M.M. Shenoy, D.L. McDowell, R.W. Neu, Transversely isotropic viscoplasticity model for a directionally solidified Ni-base superalloy. Int J Plas, 22 (2006) 2301-2326. [9] P. Fernandez-Zelaia, Thermomechanical Fatigue Crack Formation in Nickel-Base Superalloys at Notches, M.S. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2012. [10] R. Mucke, H. Kiewel, Nonlocal cyclic life prediction for gas turbine components with sharply notched geometries. J Eng Gas Turbines Power, 130(1) (2008) 012506. [11] L. Susmel, D. Taylor, A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigue Fracture Eng Mater Struct, 30 (2007) 567-581. [12] L. Susmel, D. Taylor, An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. J Eng Mater Technol, 132(2) (2010) 021002. [13] D. Taylor, The theory of critical distances. Eng Fracture Mechanics, 75 (2008) 1696-1705. [14] R.A. Naik, D.B. Lanning, T. Nicholas, A.R. Kallmeyer., A critical plane gradient approach for the prediction of notched HCF life. Int J Fatigue, 27 (2005) 481-492. [15] W.J. Ostergren, A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue. J Testing Evaluation, 4 (1976) 327-339. [16] Z.J. Moore, R.W. Neu, Fatigue life modeling of anisotropic materials using a multiaxial notch analysis. J Eng Mater Technol, 133(3) (2011) 031001.

RkJQdWJsaXNoZXIy MjM0NDE=