ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- Acknowledgements The study was supported by The Ministry of education and science of Russian Federation, project 14.B37.21.0384, and by The Russian Foundation of Basic Research, project 12-02-31375/12. References [1] S.P. Bardakhanov, A.I. Korchagin, N.K. Kuksanov, A.V. Lavrukhin, R.A. Salimov, S.N. Fadeev, V.V. Cherepkov, Nanopowders obtained by evaporating initial substances in an electron accelerator at atmospheric pressure. Dokl Phys, 51 (2006) 353-356 [2] M.E. Balezin, V.V. Bazarnyi, E.A. Karbovnichaya, S.Yu. Sokovnin, Application of nanosecond electron beam for production of silver nanopowders. Nanotechn in Russia, 6 (2011) 757-762. [3] V.V. Valchuk, S.V. Khalikov, A.P. Yalovets, Modeling of action of intensive charged particles beams on the slabs. Mat Model, 4 (1992) 112-124. [4] S.A. Chistyakov, S.V. Khalikov, A.P. Yalovets, Investigation of the formation of elastoplastic waves in a metal target irradiated with charged particles. Techn Phys, 38 (1993) 5-9. [5] E.F. Dudarev, O.A. Kashin, A.B. Markov, A.E. Mayer, A.N. Tabachenko, N.V. Girsova, G.P. Bakach, S.A. Kitsanov, M.F. Zhorovkov, A.B. Skosyrskii, G.P. Pochivalova, Deformation behavior and spalling fracture of a heterophase aluminum alloy with ultrafine-grained and coarse-grained structure subjected to a nanosecond relativistic high-current electron beam Russian Phys J, 54 (2011) 713-720. [6] A.Yu. Kuksin, P.R. Levashov, V.V. Pisarev, M.E. Povarnitsyn, A.V. Yanilkin, A.S. Zakharenkov, Model of fracture of liquid aluminum based on atomistic simulations, in: Physics of Extreme States of Matter – 2011, IPCP RAS, Chernogolovka, 2011. pp. 57-59. [7] A.Yu. Kuksin, G.E. Norman, V.V. Pisarev, V.V. Stegailov, A.V. Yanilkin, Theory and molecular dynamics modeling of spall fracture in liquids. Phys Rew B, 82 (2010) 174101. [8] N.B. Volkov, E.L. Fen’ko, A.P. Yalovets, Simulation of generation of ultradisperse particles upon irradiation of metals by a high-power electron beam. Techn Phys, 55 (2010) 1389-1399. [9] V.E. Fortov, K.V. Khishchenko, P.R. Levashov, I.V. Lomonosov, Wide-range multi-phase equations of state for metals. Nucl Instrum Meth Phys Res A, 415 (1998) 604–608. [10] S.N. Kolgatin, A.V. Khachatur’yants, Interpolation equations of state of metals, Teplofiz Vys Temp, 20 (1982) 90-94. [11] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 5, Statistical Physics, Part 1, New York, Pergamon, 1980. [12]V.S. Krasnikov, A.E. Mayer, Numerical investigation of the change of dislocation density and microhardness in surface layer of iron targets under the high power ion- and electron-beam treatment. Surf Coat Techn, 212 (2012) 79-87.

RkJQdWJsaXNoZXIy MjM0NDE=