ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -7- Phys Rev B, 39 (1989) 5566-5568. [14] S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Interatomic potential for Si-O systems using Tersoff parameterization. Computational Materials Science, 39 (2007) 334-339. [15] A.J.H. McGaughey,M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures. Int J Heat Mass Tran, 47 (2004) 1799-1816. [16] F. Muller-Plathe,P. Bordat, Reverse non-equilibrium molecular dynamics. Lect Notes Phys, 640 (2004) 310-326. [17] T.Y. Ng, J.J. Yeo, Z.S. Liu, A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects. Carbon, 50 (2012) 4887-4893. [18] J.J. Yeo, Z.S. Liu, T.Y. Ng, Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology, 23 (2012) 385702. [19] M.J. Weber, Glasses, in: Handbook of Optical Materials, CRC Press, Boca Raton, Florida, 2002. [20] M.T. Dove, Introduction to Lattice Dynamics, Cambridge University Press, Cambridge, 1993. [21] R.B. Laughlin,J.D. Joannopoulos, Phonons in amorphous silica. Phys Rev B, 16 (1977) 2942-2952. [22] T. Woignier, J. Phalippou, R. Vacher, J. Pelous, E. Courtens, Different kinds of fractal structures in silica aerogels. J Non-Cryst Solids, 121 (1990) 198-201. [23] S. Bhattacharya,K.E. Gubbins, Fast Method for Computing Pore Size Distributions of Model Materials. Langmuir, 22 (2006) 7726-7731.

RkJQdWJsaXNoZXIy MjM0NDE=