ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- Northwestern Polytechnical University (NWPU), Xi’an, China for providing test materials. One of the authors (D.L. Chen) is also grateful for the financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The authors would also like to thank Messrs. Q. Li, A. Machin, J. Amankrah and R. Churaman for easy access to the laboratory facilities of Ryerson University and their assistance in the experiments. References [1] K.K. Murthy, S. Sundaresan, Phase transformations in a welded near α titanium alloy as a function of weld cooling rate and post-weld heat treatment conditions. J Mater Sci, 33 (1998) 817–826. [2] A.A. Popov, A.G. Illarionov, O.A. Oleneva, Structure and properties of welds of high-alloy titanium alloy after heat treatment. Metal Sci Heat Treat, 52 (2011) 476–480. [3] G.Q. Wang, Y. Zhao, A.P. Wu, G.S. Zou, J.L. Ren, Microstructure and high-temperature tensile properties of Ti3Al alloys laser welding joint. Chin J Nonfer Metals, 17 (2007) 1803–1807. [4] M.F. Arenas, V.L. Acoff, The effect of postweld heat treatment on gas tungsten arc welded gamma titanium aluminide. Scripta Mater, 46 (2002) 241–246. [5] Y. Guo, Y.L. Chiu, M.M. Attallah, H.Y. Li, S. Bray, P. Bowen, Characterization of dissimilar linear friction welds of α-β titanium alloys. J Mater Eng Perf, 21 (2012) 770–776. [6] S.J. Tuppen, M.R. Bache, W.E. Voice. A fatigue assessment of dissimilar titanium alloy diffusion bonds. Inter J Fatigue, 27 (2005) 651–658. [7] P.F. Fu, F.J. Liu, Z.Y. Mao, J.W. Li, Effects of electron beam local heat treatment on fatigue properties for Ti-6Al-4V alloy joints. International Technology and Innovation Conference, Hangzhou, China, November 6-7, 2006, pp. 72–75. [8] P. Azar, P. Li, P.C. Patnaik, R. Thamburaj, J.-P, Immarigeon, Electron beam weld repair and qualification of titanium fan blades for military gas turbine engine. RTO AVT Specialists’ Meeting on “Cost Effective Application of Titanium Alloys in Military Platforms”, Loen, Norway, May 7-11, 2001, RTO-MP-069(II), 2001, 18.1–18.16. [9] A.S.H. Kabir, X.J. Cao, J. Gholipour, P. Wanjara, J. Cuddy, A. Birur, M. Medraj, Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti-6Al-4V. Metall Mater Trans A, 43 (2012) 4171–4184. [10] S.J. Li, T.C. Cui, Y.L. Hao, R. Yang, Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater, 4 (2008) 305–317. [11] B. Koch, B. Skrotzki, Strain controlled fatigue testing of the metastable-titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB). Mater Sci Eng A, 528 (2011) 5999–6005. [12] Y.H. Lin, K.H. Hu, F.H. Kao, S.H. Wang, J.R. Yang, C.K. Lin, Dynamic strain aging in low cycle fatigue of duplex titanium alloys. Mater Sci Eng A, 528 (2011) 4381–4389. [13] M. Satoh, S. Horibe, M. Nakamura, H. Uchida, Cyclic deformation and fatigue in TiAl intermetallic compound under plastic strain control. Inter J Fatigue, 32 (2010) 698–702. [14] J. Plumbridge, M. Stanley, Low cycle fatigue of a titanium 829 alloy. Inter J Fatigue, 4 (1986) 209–216. [15] E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1986. [16] A.K. Nag, K.V.U. Praveen, V. Singh, Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo- 0.25Si alloy at room temperature. Bull Mater Sci, 29 (2006) 271–275.

RkJQdWJsaXNoZXIy MjM0NDE=