ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -4- formation of grass like architectures. Compared with other methods for fabricating copper oxide grass like architectures, the method proposed in the paper featured simplicity and cheapness. References [1] F.C. Akkari, M. Kanzari, Optical, structural, and electrical properties of Cu2O thin films. Phys. Status Solidi A, 207 (2010) 1647. [2] L. Liao, B. Yan, F. Hao, G.Z. Xing, J.P. Liu, B.C. Zhao, Z.X. Shen, T. Wu, L. Wang, J.T.L. Thong, C.M. Li, W. Huang, T. Yu, P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires. Appl. Phys. Lett., 94 (2009) 113106. [3] P.H. Shih, J.Y. Ji, Y.R. Ma, S.Y. Wu, Size effect of surface magnetic anisotropy in Cu2O nanoparticles. J. Appl. Phys. , 103 (2008) 07B735. [4] R.N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells. Sol. Energy Mater. Sol. Cells, 27 (1992) 361. [5] J.Y. Ho, M.H. Huang, Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C, 113 (2009) 14159. [6] L. Guan, H. Pang, J. Wang, Q. Lu, J. Yin, F. Gao, Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem. Commun., 46 (2010) 7022. [7] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407 (2000) 496. [8] O. Akhavan, H. Tohidi, A.Z. Moshfegh, Synthesis and electrochromic study of sol–gel cuprous oxide nanoparticles accumulated on silica thin film. Thin Solid Films, 517 (2009) 6700. [9] H. Pang, F. Gao, Q.Y. Lu, Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun., 9 (2009) 1076. [10] A. Ahmed, N. Gajbhiye, S. Namdeo, Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature. J. Solid State Chem., 184 (2011) 30. [11] W.Q. Zhang, L. Shi, K.B. Tang, S.M. Dou, Controllable Synthesis of Cu2O Microcrystals via a Complexant-Assisted Synthetic Route. Eur. J. Inorg. Chem., 7 (2010) 1103. [12] Y. Yu, F.P. Du, L.L. Ma, J.L. Li, Y.Y. Zhuang, X.H. Qi, Synthesis of Cu2O nanowhiskers with CTAB as a template in water-in-oil microemulsion system. RARE METALS. 24 (2005) 283. [13] Y.W. Tan, X.Y. Xue, Q. Peng, H. Zhao, T.H. Wang, Y.D. Li, Controllable Fabrication and Electrical Performance of Single Crystalline Cu2O Nanowires with High Aspect Ratios. Nano Lett. 7 (2007) 3723. [14] J.J. Teo, Y. Chang, H.C. Zeng, Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-Assembly of CuO Nanocrystals. Langmuir. 22 (2006) 7369. [15] R.C. Wang, C.H. Li, Dry Synthesis and Photoresponse of Single-Crystalline Cu2O Nanorod Arrays. J. Electrochem.Soc. 159 (2012) K73. [16] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 18 (2006) 867. [17] Y.S. Luo, S.Q. Li, Q.F. Ren, J.P. Liu, L.L. Xing, Y. Wang, Y. Yu, Z.J. Jia, J.L. Li, Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Cryst. Growth Des. 7 (2007) 87. [18] C.H. Kuo, M.H. Huang, Fabrication of Truncated Rhombic Dodecahedral Cu2O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching. J. AM. CHEM. SOC. 130 (2008) 12815. [19] R.H. Wei, H.B. Yang, K. Du, W.Y. Fu, Y.M. Tian, Q.J. Yu, S.K. Liu, M.H. Li, G.T. Zou, A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys. 108 (2008) 188.

RkJQdWJsaXNoZXIy MjM0NDE=